• Title/Summary/Keyword: Substrate bias voltage

Search Result 270, Processing Time 0.029 seconds

The Delay time of CMOS inverter gate cell for design on digital system (디지털 시스템설계를 위한 CMOS 인버터게이트 셀의 지연시간)

  • 여지환
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.195-199
    • /
    • 2002
  • This paper describes the effect of substrate back bias of CMOS Inverter. When the substrate back bias applied in body, the MOS transistor threshold voltage increased and drain saturation current decreased. The back gate reverse bias or substrate bias has been widely utilized and the following advantage has suppressing subthreshold leakage, lowering parasitic junction capacitance, preventing latch up or parasitic bipolar transistor, etc. When the reverse voltage applied substrate, this paper stimulated the propagation delay time CMOS inverter.

  • PDF

Different Growth Position of Iridium-catalyzed Carbon Nanofibers on the Substrate According to the Value of the Applied Bias Voltage

  • Kim, Sung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.25-29
    • /
    • 2006
  • Vertical growth of iridium-catalyzed carbon nanofibers could be selectively grown on the MgO substrate using microwave plasma-enhanced chemical vapor deposition method. Growth positions of the iridium-catalyzed carbon nanofibers on the MgO substrate could be manipulated according to the applied bias voltage. At-150 V, the carbon nanofibers growth was confined only at the corner area of the substrate. Based on these results, we discussed the cause for the confinement of the vertically grown carbon nanofibers on the specific area of the MgO substrate as a function of the applied bias voltage.

Optical properties of diamond-like carbon films deposited by ECR-PECVD method (ECR-PECVD 방법으로 증착한 Diamond-Like carbon 박막의 광 특성)

  • Kim, Dae-Nyoun;Kim, Ki-Hong;Kim, Hye-Dong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.291-299
    • /
    • 2004
  • DLC films were deposited using the ECR-PECVD method with the fixed deposition condition, such as ECR power, methane and hydrogen gas-flow rates and deposition time, for various substrate bias voltage. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristic of the films were analyzed using the FTIR, Raman, and UV/Vis spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio(ID/IG) of the D and G peak was increased as the substrate bias voltage increased and films hardness was increased. Optical transmittances of DLC film were decreased with increasing deposition time and substrate bias voltage. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

Effect of Substrate Bias Voltage on DLC Films Prepared by ECR-PECVD (ECR-PECVD 방법으로 제작된 DLC 박막의 기판 Bias 전압 효과)

  • 손영호;정우철;정재인;박노길;김인수;김기홍;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.328-334
    • /
    • 2000
  • DLC (Diamond-Like Carbon) films were deposited by ECR-PECVD (electron cyclotron resonance plasma-enhanced chemical vapor deposition) method with the variation of substrate bias voltage under the others are constant except it. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristics of the film were analyzed using the Dektak surface profiler, SEM, FTIR spectroscopy, Raman spectroscopy and Nano Indentation tester. FTIR spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio $(I_D /I_G)$ of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

Substrate-bias voltage generator for leakage power reduction of digital logic circuits operating at low supply voltage (초저전압 구동 논리 회로의누설 전류 억제를 위한 기판 전압 발생회로)

  • Kim Gil-Su;Kim Hyung-Ju;Park Sang-Soo;Yoo Jae-Tack;Ki Hoon-Jae;Kim Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.1-6
    • /
    • 2006
  • This paper proposes substrate-bias voltage generator to reduce leakage power consumption of digital logic circuits operating at supply voltage of 0.5V. Proposed substrate-bias voltage generator is composed of VSS and VBB generator. The former circuit produces negative voltage and supplies its output voltage for VBB generator. As a result VBB generator develops much lower negative voltage than that of conventional one. Proposed circuit is fabricated using 0.18um 1Poly-6Metal CMOS process and measurement result demonstrated stable operation with substrate-bias voltage of -0.95V.

Influence of bias voltage on properties of carbon nanotubes prepared by MPECVD (마이크로 웨이브를 이용한 탄소나노튜브 성장시 바이어스 전압의 효자)

  • Choi, Sung-Hun;Lee, Jae-Hyeung;Yang, Jong-Seok;Park, Da-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1440-1441
    • /
    • 2006
  • In this study, we synthesized CNTs(carbon nanotubes) on the glass substrate by microwave plasma enhanced chemical vapor deposition (MPECVD), Effect of bias voltage on the grown behavior and morphology of CNTs were investigated. Recently, it has been proposed that aligned CNTs can also be achieved by the application of electric bias to the substrate during growth, the first time reported the bias effect such that the nanotube alignment occurred only when a positive bias was applied to the substrate whereas no aligned growth occurred under a negative bias and no tube growth was observed without bias. On the country, several researchers reported some different observations that aligned nanotubes could also be grown under negative substrate biases. This discrepancy as for the effect of positive and negative bias may indicate that the bias effect is not fully understood yet. The glass and Si wafers were first deposited with TiN buffer layer by r.f sputtering method, and then Ni catalyst same method, The thickness of TiN and Ni layer were 200 nm and 60 nm, respectively. The main process parameters include the substrate bias (0 to - 300 V), and deposition pressure (8 to 20 torr).

  • PDF

Impurity analysis of Ta films using secondary ion mass spectrometry (이차이온 질량분석기를 이용한 탄탈 박막내의 불순물 분석)

  • ;;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • Ta films were deposited on Si (100) substrates at zero substrate bias voltage and a substrate bias voltage of -125 V ($V_{s}$ = -125 V) using a non-mass separated ion beam deposition system. To investigate the effect of the negative substrate bias voltage on the impurity concentration in the Ta films, secondary ion mass spectrometry (SIMS) was used to determine impurities in the Ta films. By the SIMS depth profiles with $Cs^{+}$ cluster ion beam, high intensities of O, C and Si were clearly found in the Ta film at $V_{s}$ = 0 V, whereas these impurities remarkably decreased in the Ta film at $V_{s}$ = -125 V. Furthermore, from the SIMS result with $Cs^{+}$ and $O_2^{+}$ ion beams, it was found that applying the negative substrate bias voltage could affect individual impurity contents in the Ta films during the deposition. Discussions concerning the effect of the negative substrate bias voltage on the impurity concentration of Ta films will be described in details.

The Effect of Initial DC Bias Voltage on Highly Oriented Diamond Film Growth on Silicon

  • Dae Hwan Kang;Seok Hong Min;Ki Bum Kim
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.13-17
    • /
    • 1997
  • It is identified that the diamond films grown o bias-treated (100) silicon showed different surface morphologies and film textures according to the initial applied dc bias voltage at the same growth condition. The highly oriented diamond film (HODF) was successfully grown on -200 V bias-treated silicon substrate in which the heteroepitaxial relation of $(100)_{dimond}//(100)_{si}\; and\; [110]_{diamond}//[110]_{si}$ was identified. On the contrary, the heteroepitaxial relation was considerably disturbed in the samples bias-voltage was a key factor in growing the highly oriented diamond film on (100) silicon substrate. Considering the experimental results, we proposed a new model about heteroepitaxial diamond growth on silicon, in which 9 diamond unit cell are matched with 4 silicon cells and the bond covalency of both atoms is satisfied via the intermediate layer at the interface as well.

  • PDF

Competitive Growth of Carbon Nanotubes versus Carbon Nanofibers

  • Kim, Sung-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1150-1153
    • /
    • 2003
  • Carbon nanofilaments were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition method. The structures of carbon nanofilaments were identified as carbon nanotubes or carbon nanofibers. The formation of bamboo-like carbon nanotubes was initiated by the application of the bias voltage during the plasma reaction. The growth kinetics of bamboo-like carbon nanotubes increased with increasing the bias voltage. The growth direction of bamboo-like carbon nanotubes was vertical to the substrate.

Deposition of diamond thin film by MPECVD method (마이크로웨이브 화학 기상 증착법을 이용한 다이아몬드 박막의 증착)

  • Sung Hoon Kim;Young Soo Park;Jo-Won Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.92-99
    • /
    • 1994
  • Diamond thin film was deposited on n type (100) Si substrate by MPECVD(Microwave plasma Enhanced Chemical Vapor Deposition). For the increase in nucleation density of diamond, Si substrate was pretreated by diamond powder or negative bias voltage was applied to the substrate during the initial deposition. In the case of retreated Si substrate, the diamond thin film quality was enhanced with increasing the total pressure in the range of 20~150 Torr. For the negative bias voltage, the formation condition of the diamond was seriously affected by $CH_4$ concentration and total pressure. The formation condition will be discussed with electrical current of substrate generated by plasma ions which depend on $CH_4$concentration, bias voltage, and total pressure.

  • PDF