• Title/Summary/Keyword: Substrate Depth

Search Result 350, Processing Time 0.026 seconds

Habitat assessment of Lamprotula coreana by using physical habitat simulation system (PHABSIM) at the Guem River (Physical habitat simulation system (PHABSIM) 을 이용한 금강의 두드럭조개 (Lamprotula coreana) 서식지 평가)

  • Kim, Dae-Hee;Kim, Kyeong-Hwan;Lee, Won-Ok;Hur, Jun-Wook
    • The Korean Journal of Malacology
    • /
    • v.31 no.4
    • /
    • pp.307-314
    • /
    • 2015
  • This study sampled endangered species, Lamprotula coreana, and surveyed its habitat at the Guem River with three times from June to August 2013. To assess the habitat, this study conducted field survey considering diverse physical conditions of stream, such as pool, run and riffle, and measured transect, water depth, water velocity, substrate structure, and habitat type. When L. coreana collected, length, weight and age were measured. Water velocity, water depth and substrate structure were recorded to develop HSI (habitat suitability index) and performed PHABSIM (physical habitat simulation) to estimate the optimum flow discharge. Water level, flow discharge and transect data were used for habitat assessment, and PHABSIM was applied to calculate WUA (weighed usable area). Shell length was $73.1{\pm}18.4mm$ (28.5-102.0 mm), shell weight was $131.6{\pm}72.3g$ (28.0-281.0 g) and age was two to seven years from L. coreana collected at the upstream of the Guem River. Developed HSI indicated that the optimal habitat for L. coreana was 0.4-0.5 m for water depth, 0.3-0.5 m/s for water velocity and sand to boulder for substrate structure. The optimum ecological flow discharge for L. coreana was 2.1 cms and WUA was $3,730m^2$/1000 m by the result of PHABSIM. Recently, river construction work and habitat disturbance have caused negative impact on the distribution of L. coreana. The result of this study would provide fundamental data for habitat restoration and management of L. coreana.

Effects of Soil Depth and Irrigation Period on Some of the Native Plants in and Artificial Substrate of Roof Garden (옥상녹화용 인공배합토에서 토심 및 관수주기에 따른 몇몇 자생식물의 생육특성)

  • Bang, Kwang-Ja;Ju, Jin-Hee;Kim, Sun-Hae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • Focusing on native plants that have high possibility of being introduced as rooftop material, this study was conducted to investigate extensive and easy-to-manage rooftop garden and to raise the utilization of native plants by verifying their growing response to artificial substrate soil depth and irrigation period. The study was conducted from March to September in 2002. Plants tested included Chrysanthemum zawadskii, Sedium middendorffianum, Thymus quinquecostatus, Allium senescens, and Dianthus superbus. Regarding soil depth, it was 5 cm and 10 cm. Irrigation period was non-irrigation, 1-week, 2-weeks, and 3- weeks, Its result is as follows; 1. In case of Sedum middendorffianum Maxim, mortality rate was 0% regardless of soil depth and irrigation period making it very suitable material for rooftop garden. 2. In case of Allium senescens L., mortality rate was 0% regardless of soil depth and irrigation period making it very suitable material for rooftop garden. Therefore, Provided that fertilizing is managed well, it is a plant that can be highly utilized.3. In case of Chrysanthemum zawadskii Herb. Subsp. (Nakai) Y. Lee Stat., the growth of top was lower in 10cm than in 5cm and it grew well in 10cm. When utilizing for rooftop garden, it would be desirable to keep minimum viable soil depth at over 10cm. If there is enough rainfall, soil and soil depth seem to have greater effect on growth than irrigation period does. 4. In case of Diauthus superbus L. var. longicalycinus (Maxim) Williams, rooting rate and growth were better in 10cm than in 5cm. Therefore, it is desirable to keep minimum soil depth at over 10cm. 5. In case of Thymus quinquecostatus Celak, the growth of top and flowering were better in 10cm than in 5cm. Therefore, it seems desirable to have minimum viable soil depth to be over 10cm. In conclusion, the most suitable species for rooftop garden are Sedium middendorffianum and Allium senescens in this experiment. However, Chrysanthemum zwadskii, Thymus quinquecostatus, and Dianthus chinensis also can be utilized greatly when irrigation is managed regularly in artificial mixed soil over 10cm.

Classification of Microhabitats based on Habitat Orientation Groups of Benthic Macroinvertebrate Communities (저서성 대형무척추동물의 서식 특성에 따른 미소서식처 유형화)

  • Kim, Jungwoo;Kim, Ah Reum;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.728-735
    • /
    • 2017
  • Many restoration projects are underway to revive disturbed streams. In order to achieve successful stream restoration, a variety of microhabitats should be created to promote biological diversity. Research on biological classification of microhabitats is essential for biological diversity. However, research on classification using only physical environmental factors has been carried out. The purpose of this study is to classify and quantify the microhabitat of the stream by using macroinvertebrates systematically. In this study, eight wadeable streams and four non-wadeable streams were surveyed to identify the benthic macroinvertebrates in these various microhabitats. Among the physical environmental factors (current velocity, water depth, substrate), the particle size of the substrate was the most influential factor in the emergence of the Habitat Orientaion Groups. Among the HOGs, clinger and burrower were highly correlated with physical environment factors and showed the opposite tendency. The distribution of clinger and burrower according to the physical environmental factors showed two tendencies based on the current velocity (0.3 m/s) and water depth (0.4 m). In addition, the particle size of the substrate showed three trends (${\leq}-5.0$, -5.0 < mean diameter ${\leq}-2.0$, > -2.0). Based on the abundance tendency of these two HOGs, the microhabitats were classified into nine types, from a eupotamic microhabitat to a lentic microhabitat. Classification of the microhabitats using HOGs can be employed for creating microhabitats to promote biological diversity in future stream restoration plans.

AES Analysis of Au, Au/Cr, Au/Ni/Cr and Au/Pd/Cr Thin Films by the Change of Substrate Temperature and Annealing Temperature (기판온도와 열처리온도의 변화에 따른 Au/Cr, Au/Ni/Cr 및 Au/Pd/Cr 다층박막의 AES 분석)

  • Yoo, Kwang Soo;Jung, Hyung Jin
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.217-223
    • /
    • 1993
  • Thin films of the Au/Cr, Au/Ni/Cr and Au/Pd/Cr systems were deposited on alumina substrates at ambient temperature and $250^{\circ}C$ in a high-vacuum resistance heating evaporator and annealed at $300^{\circ}C$, $450^{\circ}C$ and $600^{\circ}C$ for 1 hour in air, respectively. The film thicknesses of Au, Ni(or pd), and Cr were $1000{\AA}$, $300{\AA}$, and $50{\AA}$, respectively. The substrate temperature during deposition and the post-deposition annealing temperature affected the sheet resistance of thin-films due to the inter-diffusion of each layer. As a result of Auger depth profile analysis, in the Au/Cr system Cr already diffused out to Au surface during deposition at the substrate temperature of $250^{\circ}C$ and Au distribution changed after heat treatment. In the Au/Ni/Cr and Au/Pd/Cr systems, diffusion phenomena of Ni and Pd were found and especially Ni (approximately 45 at.%) diffused out to Au surface and oxidized.

  • PDF

GaAs Epitaxial Layer Growth by Molecuar Beam Epitaxy (MBE에 이한 GaAs 에피택셜층 성장)

  • 정학기;이재진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.34-40
    • /
    • 1985
  • Characteristics of GaAE epilayers grown on (100) CaAs wa(tors by molecular beam epitaxy (MBE) under various single crystal growing conditions were investigated. In fabrica-ting GaAs, epilayer by MBE, the most important factors are a substrate temperature(ts) and a flux density ratio (As/Ga). In this experiment, the substrate temperature was varied in the range of 48$0^{\circ}C$ to $650^{\circ}C$ and As and Ga cell temperatures were varied in the range of 218$^{\circ}C$ to 256$^{\circ}C$ and 876$^{\circ}C$ to 98$0^{\circ}C$, respectively. At the substrate temperature of 54$0^{\circ}C$, As cell temperature of 23$0^{\circ}C$, and Ga cell temperature of 91$0^{\circ}C$, the As/Ga ratio was 5"10, the surface morphology was most smooth . Investigation of As-stabilized surface by RHEED and of depth profile by SIM5 showed that As is less stable than Ga. Also, X-ray diffraction measurement revealed that single crystals of (400) and (200) were formed at the both sub-strate temperatures of 52$0^{\circ}C$ and 54$0^{\circ}C$.TEX>.

  • PDF

Thermal Stability of Ru-inserted Nickel Monosilicides (루테늄 삽입층에 의한 니켈모노실리사이드의 안정화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.159-168
    • /
    • 2008
  • Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

Microstructure Characterization for Nano-thick Ir-inserted Nickel Silicides (나노급 Ir 삽입 니켈실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Yoon, Ki-Jeong;Lee, Tae-Hyun;Kim, Moon-Je
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.207-214
    • /
    • 2007
  • We fabricated thermally-evaporated 10 -Ni/(poly)Si and 10 -Ni/1 -Ir/(poly)Si structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required for annealing. Silicides underwent rapid at the temperatures of 300-1200 for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope(TEM) and an Auger depth profile scope were employed for the determination of vertical section structure and thickness. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates shoed low resistance up to 1000 and 800, respectively, while the conventional nickle monosilicide showed low resistance below 700. Through TEM analysis, we confirmed that a uniform, 20 -thick silicide layer formed on the single-crystal silicon substrate for the Ir-inserted case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of 1000. Auger depth profile analysis also supports the presence of thismixed microstructure. Our result implies that our newly proposed iridium-added NiSi process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

A Numerical Analysis of Eddy-Current Electromagnetic Field for the In-Process Measurement of Case Depth in Laser Surface Hardening Processes (레이저 표면경화공정에서 경화층깊이의 실시간 측정을 위한 와전류 전자기장의 이론적 해석)

  • 박영준;조형석;한유희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.529-539
    • /
    • 1994
  • In laser heat treatment process of steels, the thin layer of substrate is rapidly heated to the austenitizing temperature and subsequently cooled at a very fast rate due to the self-quenching effect. Consequently, it is transformed to martensitic structure which has low magnetic permeability. This observation facilitates the use of a sensor measuring the change of electromagnetic field induced by the hardening layer. In this paper, the eddy-current electromagnetic field is analyzed by a finite element method. The purpose of this analysis is to investigate how the electrical impedance of the sensor's sensing coil varies with the change in permeability. To achieve this, a numerical model is formulated, taking into consideration the hardening depth, distance of the sensor from the hardened surface and the frequency driving the sensor. The results obtained by numerical simulation show that the eddy-current measurement method can feasibly be used to measure the changing hardening depth within the frequency range from 10 kHz to 50 kHz.

Characterization of Thin Film Materials by Nanoindentation and Scanning Probe Microscopy (나노인덴테이션과 주사탐침현미경을 이용한 박막 재료의 특성평가)

  • Kim, Bong-seob;Yun, Jon-do;Kim, Jong-kuk
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.606-612
    • /
    • 2003
  • Surface and mechanical properties of thin films with submicron thickness was characterized by nanoindentation with Berkovich and Vickers tips, and scanning probe microscopy. Nanoindention was made in a depth range of 15 to 200 nm from the surface by applying tiny force in a range from 150 to $9,000 \mu$N. Stiffness, contact area, hardness, and elastic modulus were determined from the force-displacement curve obtained. Reliability was first tested by using fused quartz, a standard sample. Elastic modulus and hardness values of fused quartz measured were the same as those reported in the literature within two percent of error. Mechanical properties of ITO thin film were characterized in a depth range of 15∼200nm. As indentation depth increased, elastic modulus and hardness decreased by substrate effect. Ion beam deposited DLC thin films were indented in a depth range of 40∼50 nm. The results showed that the DLC thin film using benzene and bias voltage 0∼-50 V has elastic modulus and hardness value of 132 and 18 GPa respectively. Pure DLC thin films showed roughnesses lower than 0.25 nm, but silicon-added DLC thin films showed much higher roughness values, and the wavy surface morphology.

Microstructure and Electrical Properties of the Pt/Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS) Using the PbO Buffer Layer (PbO 완충층을 이용한 Pt/Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS)의 미세구조와 전기적 특성)

  • Park, Chul-Ho;Song, Kyoung-Hwan;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.104-109
    • /
    • 2005
  • To study the role of PbO as the buffer layer, Pt/PZT/PbO/Si with the MFIS structure was deposited on the p-type (100) Si substrate by the r.f. magnetron sputtering with $Pb_{1.1}Zr_{0.53}Ti_{0.47}O_3$ and PbO targets. When PbO buffer layer was inserted between the PZT thin film and the Si substrate, the crystallization of the PZT thin films was considerably improved and the processing temperature was lowered. From the result of an X-ray Photoelectron Spectroscopy (XPS) depth profile result, we could confirm that the substrate temperature for the layer of PbO affects the chemical states of the interface between the PbO buffer layer and the Si substrate, which results in the inter-diffusion of Pb. The MFIS with the PbO buffer layer show the improved electric properties including the high memory window and low leakage current density. In particular, the maximum value of the memory window is 2.0V under the applied voltage of 9V for the Pt/PZT(200 nm, $400^{\circ}C)/PbO(80 nm)/Si$ structures with the PbO buffer layer deposited at the substrate temperature of $300^{\circ}C$.