• Title/Summary/Keyword: Subsonic

Search Result 339, Processing Time 0.022 seconds

EFFECTS OF THE LOW REYNOLDS NUMBER ON THE PERFORMANCE OF AN AXIAL COMPRESSOR (저 레이놀즈 수가 압축기 성능에 미치는 영향)

  • Choi, Min-Suk;Baek, Je-Hyun;Oh, Seong-Hwan;Ko, Han-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.138-141
    • /
    • 2007
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density became it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise wag diminished by the separation on the suction surface and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 90% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the low Reynolds number on the performance were analyzed in detail.

  • PDF

A Fundamental Study of the Subsonic Spiral Jet (아음속 스파이럴 제트 유동에 관한 기초적 연구)

  • Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.502-507
    • /
    • 2003
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of convergent nozzle. The objective of the present study is to understand the flow characteristics of the spiral jet, using a computational method. A finite volume scheme is used to solve 3-dimensional Navier-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The computational results are validated by the previous experimental data. It is found that the spiral jet is generated by coanda effect at the inlet of the convergent nozzle and its fundamental features are dependent the pressure ratio of the radial flow through the annular slit and the coanda wall curvature.

  • PDF

Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines (축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형)

  • Yoon, Eui Soo;Park, Moo Ryong;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

Spray Characteristics of Modulated Liquid Jet Injected into a Subsonic Crossflow (주파수 변조 분사가 횡단 유동장의 분무 특성에 미치는 영향)

  • Lee, I.C.;Kim, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2009
  • These experiments are close examination of spray characteristics that are continuous liquid jet and modulated liquid jet. The experiments were conducted using water, over a range of crossflow velocities from $42{\sim}l36\;m/s$, with modulation frequencies of $35.7{\sim}166.2\;Hz$. Between continuous crossflow jet and modulated cross-flow jet of penetration, breakup point, spray angle and macro spray shape are experimentally investigated with image analysis. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than modulation effect. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of modulation frequency, SMD inclination of the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various modulation frequency was same distribution. And volume flux was decreased when the modulation frequency increase.

  • PDF

Design Optimization of a Single-Stage Transonic Axial Compressor and Test Evaluation of Its Aerodynamic Performance (1단 천음속 축류압축기의 최적 설계 및 공력 성능 시험 평가)

  • Park, Tae Choon;Kang, Young-Seok;Hwang, Oh-Sik;Song, Ji-Han;Lim, Byeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.77-84
    • /
    • 2012
  • The aerodynamic performance of a single-stage transonic axial compressor was experimentally evaluated by measuring pressure and temperature distribution at the inlet and outlet of the compressor. The compressor was developed by Korea Aerospace Research Institute through multidisciplinary design optimization (MDO) method, especially integrating aerodynamic performance and structural stability. The test results show that the pressure ratio is 1.65 and the efficiency is 85.8 % at design point, where the corrected speed is 22,000 rpm and the corrected mass flow rate is 15.4 kg/s, and it has a good agreement with the design target and computational results. The distribution of pressure ratio is very steep at design speed, compared with the trend of other subsonic compressors. Also the static pressure distribution on the stator casing shows that the blade loading is gradually increasing through the stage as designed.

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

Compressibility correction of the Panel Method in Flow Analysis of a High Subsonic Turbine Cascade (고 아음속 터빈 캐스케이드 유동 해석을 위한 패널법의 압출성 보정)

  • Kim, Hark-Bong;Kim, Jin-Kon;Kwak, Jae-Su;Kang, Jeong-Seek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • Flow analysis in a turbine cascade by Euler or Navier-Stokes equation gives relatively accurate solution, however, those method require large computer memory or computing time. On contrast, the panel method, which is applied to incompressible and inviscid flow, provides fast and reasonal solution but the compressibility correction is required for a high air velocity case. In this paper, the compressibility corrected panel method was applied in order to find velocity distribution on turbine blades. Results showed that the calculated velocity in a turbine cascade by the compressibility corrected panel method gave good agreement with the solution by finite volume method for compressible flow.

Store Separation Analysis of a Fighter Aircraft's External Fuel Tank

  • Cho, Hwan-Kee;Kang, Chi-Hang;Jang, Young-Il;Lee, Sang-Hyun;Kim, Kwang-Yeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.345-350
    • /
    • 2010
  • The repetitive vibrating action of an aerodynamic load causes an external fuel tank's horizontal fin to experience a shorter life cycle than its originally predicted one. Store separation analysis is needed to redesign the fin of an external fuel tank. In this research, free-drop tests were conducted using 15% scaled models in a subsonic wind tunnel in order to analyze the store separation characteristics of an external fuel tank. The store separation trajectory based on grid tests was also obtained to verify the results of the free-drop tests. The results acquired from the free-drop tests correlated well with the grid tests in regards to the trajectories and behavior of the stores separated from the aircraft. This agreement was especially noted in the early stages of the store separation.

Experimental Analysis of Flow Characteristics around Wind-Turbine Blades (풍력터빈 블레이드 주위 흐름의 유동특성에 대한 실험적 분석)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.64-71
    • /
    • 2010
  • The flow and noise characteristics of wake behind wind-turbine blades have been investigated experimentally using a two-frame particle image velocimetry (PIV) technique. Experiments were carried out in a POSTECH subsonic large wind-tunnel ($1.8^W{\times}1.5^H{\times}4.3^L\;m^3$) with KBP-750D (3-blade type) wind-turbine model at a freestream velocity of $U_o\;=\;15\;m/s$ and a tip speed ratio $\lambda\;=\;6.14$ (2933 rpm). The wind-turbine blades are connected to an AC servo motor, brake, encoder and torque meter to control the rotational speed and to extract a synchronization signal for PIV measurements. The wake flow was measured at four azimuth angles ($\phi\;=\;0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$) of the wind-turbine blade. The dominant flow structure of the wake is large-scale tip vortices. The turbulent statistics such as turbulent intensity are weakened as the flow goes downstream due to turbulent dissipation. The dominant peak frequency of the noise signal is identical to the rotation frequency of blades. The noise seems to be mainly induced by the tip vortices.

Blockage Correction Method for Separated Flows over an Aircraft in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부내의 항공기 실속 흐름에 대한 Blockage 보정 기법 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.42-49
    • /
    • 2005
  • A new blockage correction method has been developed for the wall interference correction of closed test-section subsonic wind tunnels based on the nonlinear relationship between separation blockage and separation drag. This method can be applied continuously from the linear lift-slope region to the highly nonlinear post-stall region by on-line processing. The present method was validated by comparing the results with a classical method based on the test results of a bluff body and a measured-boundary-condition method. It was shown that the present method is in good agreement with the measured-boundary-condition method, enabling better wall corrections than the bluff body method in both near-stall and post-stall regions.