• 제목/요약/키워드: Subsea pipe

검색결과 24건 처리시간 0.023초

심해저 파이프라인과 굽힘 제한 장치의 다중물체 접촉 해석을 통한 구조 최적설계 (Multi-Body Contact Analysis and Structural Design Optimization of Bend Restrictors for Subsea Pipelines)

  • 노정민;하윤도
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.289-296
    • /
    • 2018
  • The offshore subsea platforms are connected to subsea pipelines to transport gas/oil from wells. The pipe is a multilayered structure of polymer and steel for compensating both flexibility and strength. The pipe also requires reinforcement structures to endure the extreme environmental conditions. A vertebrae structure of bend restrictors is one of the reinforcement structures installed to protect the subsea pipe from excessive bending deformations. In this study, structural behaviors of the subsea pipeline with bend restrictors are investigated by the multi-body contact analysis in Abaqus 6.14-2. Contact forces of each bend restrictor extracted from the multi-body contact analysis can be boundary conditions for topology design optimization in Altair Hyperworks 13.0 Hypermesh-Optistruct. Multiple design constraints are considered to obtain a manufacturable design with efficient material usage. Through the multi-body contact analysis with optimized bend restrictors, it is confirmed that the bending performance of the optimized design is enhanced.

Integrated Expansion Analysis of Pipe-In-Pipe Systems

  • 최한석
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.9-14
    • /
    • 2006
  • This paper presents an analytical method, application of expansion, mechanical design, and integrated expansion design of subsea insulated pipe-in-pipe (PIP) systems. PIP system consists of a flowline and a casing pipe for the transport of high temperature and high pressure product from the subsea wells. To prevent heat lass from the fiowline, insulation material is applied between the pipes. The fiawline pipe and the casing pipe have mechanical connections through steel ring plate (water stops) and bulkheads. Pipeline expansion is defined by temperature, internal pressure, soil resistance, and interaction force between the flowline and the casing pipe. The results of the expansion analysis, the mechanical design of connection system of the two pipes and tie-in spool design are integrated for the whole PIP system.

세굴된 해저 파이프 주위 중력류의 유동 해석 (Numerical Analysis of Gravity Current Flow past Subsea Pipe above a Scour)

  • 정재환;윤현식
    • 해양환경안전학회지
    • /
    • 제22권7호
    • /
    • pp.892-899
    • /
    • 2016
  • 본 연구에서는 세굴된 해저 파이프 주위 중력류의 유동 해석을 수행하였다. 결과 비교를 위해 세굴이 아닌 평평한 해저면 위에 틈새 거리를 두고 설치된 해저 파이프 문제를 함께 고려하였다. 여기서 세굴의 깊이와 틈새 거리는 동일하며, 평평한 해저면 위에 설치된 파이프 문제는 일반적으로 실제 세굴효과를 이상적으로 구현하기 위해 주로 고려된다. 중력류와 해저 파이프 상호작용에 대한 유동특성의 이해를 위해 농도 및 와도장, 압력장 그리고 양항력 계수 등, 다양한 물리량들을 비교 및 분석 하였다. 결과적으로 세굴과 평평한 해저면 위에 설치된 해저 파이프 주위 유동특성이 달라짐을 관찰하였다, 특히 세굴의 위 파이프의 경우 구조물 상부에서 발달된 음의 와만 하류로 나아가게 되지만 평탄면 위 파이프는 이열 와구조 형태를 가지는 것을 확인하였다. 따라서 중력류에 놓인 해저 파이프의 안전 설계를 위해서는 무엇보다 실제 세굴조건을 고려하는 것이 중요 할 것으로 판단된다.

Free spans monitoring of subsea pipelines

  • Elshafey, Ahmed A.;Haddara, M.R.;Marzouk, H.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.59-72
    • /
    • 2011
  • The objective of this work is to investigate the possibility of using the longitudinal strain on the surface of a pipe to determine the inception of dangerous free spanning. The long term objective is to develop an online monitoring technique to detect the development of dangerous free spanning in subsea pipelines. This work involves experimental study as well as finite element modeling. In the experiments, the strains at four points on a cross section of a pipeline inside the free span zone are measured. Pipes with different boundary conditions and different diameter to length ratios were tested. The pipe is treated as a simple beam with fixed-fixed or simply supported boundary conditions. The variation of the strains as a function of the diameter to length ratio gives a pointer to the inception of dangerous free spanning. The finite element results agree qualitatively with the experiments. The quantitative discrepancy is a result of the difficulty to replicate the exact boundary conditions that is used by the finite element program.

Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

  • Ryu, Dong-Man;Lee, Chi-Seung;Choi, Kwang-Ho;Koo, Bon-Yong;Song, Joon-Kyu;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.720-738
    • /
    • 2015
  • This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb failure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

Comparative study on deformation and mechanical behavior of corroded pipe: Part I-Numerical simulation and experimental investigation under impact load

  • Ryu, Dong-Man;Wang, Lei;Kim, Seul-Kee;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권5호
    • /
    • pp.509-524
    • /
    • 2017
  • Experiments and a numerical simulation were conducted to investigate the deformation and impact behavior of a corroded pipe, as corrosion, fatigue, and collision phenomena frequently occur in subsea pipelines. This study focuses on the deformation of the corrosion region and the variation of the geometry of the pipe under impact loading. The experiments for the impact behavior of the corroded pipe were performed using an impact test apparatus to validate the results of the simulation. In addition, during the simulation, material tests were performed, and the results were applied to the simulation. The ABAQUS explicit finite element analysis program was used to perform numerical simulations for the parametric study, as well as experiment scenarios, to investigate the effects of defects under impact loading. In addition, the modified ASME B31.8 code formula was proposed to define the damage range for the dented pipe.

Availability analysis of subsea blowout preventer using Markov model considering demand rate

  • Kim, Sunghee;Chung, Soyeon;Yang, Youngsoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.775-787
    • /
    • 2014
  • Availabilities of subsea Blowout Preventers (BOP) in the Gulf of Mexico Outer Continental Shelf (GoM OCS) is investigated using a Markov method. An updated ${\beta}$ factor model by SINTEF is used for common-cause failures in multiple redundant systems. Coefficient values of failure rates for the Markov model are derived using the ${\beta}$ factor model of the PDS (reliability of computer-based safety systems, Norwegian acronym) method. The blind shear ram preventer system of the subsea BOP components considers a demand rate to reflect reality more. Markov models considering the demand rate for one or two components are introduced. Two data sets are compared at the GoM OCS. The results show that three or four pipe ram preventers give similar availabilities, but redundant blind shear ram preventers or annular preventers enhance the availability of the subsea BOP. Also control systems (PODs) and connectors are contributable components to improve the availability of the subsea BOPs based on sensitivity analysis.

고온 고압 수송용 해저 이중배관의 팽창해석 (Expansion Analysis of Subsea Pipe-In-Pipe Due to High Temperature and High pressure Product)

  • 최한석;손현모;김시영
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.56-60
    • /
    • 2002
  • 본 논문은 고온 고압의 유류 수송용 이중배관의 팽창에 대한 해석적 방법에 대한결과고찰과 해석, 그리고 설계시 응용이 가능한 현상에 대해 논하였다. 고온의 유류수송시 온도를 유지할 목적으로 내부의 수송 배관과 외부의 케이싱 배관사이에 절연체가 쓰여진다.이런 이중배관의 팽창을 조사할 수 있는 간단한 해석적 방법이 개발되었다. 본 논문에서는온도의 분포, 입력, 토질의 저항, 수송배관과 케이싱 배관과의 상호작용 등이 고려되어졌으며, 이 해석적 방법은 심해의 이중배관 해석에 적합하게 개발되었다. 계산의 결과 분석에서고온의 영향이 고압보다 현저한 것이 밝혀졌다.

수심과 퇴적 깊이 변화에 따른 해저배관의 하중지지능력 평가 (Load-Bearing Capacity of Subsea Pipeline with Variation of Sea Water Depth and Buried Depth)

  • 백종현;김영표;김우식
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1131-1137
    • /
    • 2012
  • 해저배관은 부력과 외부 충격을 방지하기 위하여 1.2~4m의 매설 깊이로 설치되어 운영된다. 해저배관은 수압과 토하중에 의한 외압으로부터 소성붕괴에 대한 저항성을 가져야한다. 해저배관에 수압과 토하중으로 발생하는 원주응력을 유한요소해석으로 파악하여 배관의 건전성에 미치는 영향을 평가하였다. 내압은 외압에 의한 소성붕괴 저항성을 향상시켜 소성붕괴 발생 깊이를 증가시켰다 동일 수심에서는 매설 깊이 증가에 따라 원주응력은 증가하나, 동일 매설 깊이에서는 수심이 증가함에 따라 배관에서 발생하는 원주응력은 감소한다.

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.