• 제목/요약/키워드: Submerged-flat

검색결과 57건 처리시간 0.021초

침지식 평막 MBR 내 응집제 투여에 따른 사인파형 연속투과 운전 방식의 막간차압 (Transmembrane Pressure of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Bioreactor in Coagulant Dosage)

  • 원인혜;김대천;정건용
    • 멤브레인
    • /
    • 제25권1호
    • /
    • pp.7-14
    • /
    • 2015
  • 본 연구에서는 MBR 내에 침지된 분리막 오염을 평가하기 위하여 운전시간에 따른 막간차압(TMP)을 측정하였다. 유효 막면적이 $0.02m^2$이고 공칭 세공크기가 $0.15{\mu}m$인 정밀여과용 평막 모듈을 MLSS 5,000 mg/L인 활성슬러지 용액에 침지시켰다. 운전/휴직(R/S) 및 사인파형 투과유속 연속운전(SFCO) 방식에 따른 TMP를 비교하기 위하여 동시에 투과 실험을 수행하였다. SFCO 운전방법에 따른 TMP는 R/S에 비하여 최대 93% 낮게 유지되었으며 투과유속이 증가함에 따라서 TMP 감소 효과는 줄어들었다. 또한 응집제인 $FeCl_3$를 활성슬러지 용액에 500 mg/L 농도로 주입시키면 SCFO 운전방식의 경우, 투과 운전시간을 5배 이상 증가시켜도 한계 운전 TMP인 55 kPa의 40% 미만으로 유지됨을 확인할 수 있었다.

Silicone Rubber Membrane Bioreactors for Bacterial Cellulose Production

  • Onodera, Masayuki;Harashima, Ikuro;Toda, Kiyoshi;Asakura, Tomoko
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.289-294
    • /
    • 2002
  • Cellulose production by Acetobacter pasteurianus was investigated in static culture using four bioreactors with silicone rubber membrane submerged in the medium. The shape of the membrane was flat sheet, flat sack, tube and cylindrical balloon. Production rate of cellulose as well as its yield on consumed glucose by the bacteria grown on the flat type membranes was approximately ten-fold greater than those on the non-flat ones in spite of the same membrane thickness. The membrane reactor using flat sacks of silicone rubber membrane as support of bacterial pellicle can supply greater ratio of surface to volume than a conventional liquid surface culture and is promising for industrial production of bacterial cellulose in large scale.

Harvesting of microalgae via submerged membranes: flux, fouling and its reversibility

  • Elcik, Harun;Cakmakci, Mehmet
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.499-515
    • /
    • 2017
  • The purpose of this study was to investigate membrane fouling caused by microalgal cells in submerged membrane systems consisting of polymeric and ceramic microfiltration membranes. In this study, one polymeric (flat-sheet, pore size: $0.2{\mu}m$) and two ceramic (flat-sheet, pore size: $0.2{\mu}m$ and cylindrical, pore size: $1{\mu}m$) membranes were used. Physical cleaning was performed with water and air to determine the potential for reversible and irreversible membrane fouling. The study results showed that substantial irreversible membrane fouling (after four filtration cycles, irreversible fouling degree 27% (cleaning with water) and 38% (cleaning with air)) occurs in the polymeric membrane. In cleaning studies performed using water and air on ceramic membranes, it was observed that compressed air was more effective (recovery rate: 87-91%) for membrane cleaning. The harvesting performance of the membranes was examined through critical flux experiments. The critical flux values for polymeric membrane with a pore size of $0.20{\mu}m$ and ceramic membranes with a pore size of $0.20{\mu}m$ and $1{\mu}m$ were ${\leq}95L/m^2hour$, ${\leq}70L/m^2hour$ and ${\leq}55L/m^2hour$, respectively. It was determined that critical flux varies depending on the membrane material and the pore size. To obtain more information on membrane fouling caused by microalgal cells, the characterization of the fouled polymeric membrane was performed. This study concluded that ceramic membranes with a pore size of $0.2-1{\mu}m$ in the submerged membrane system could be efficiently used for microalgae harvesting by cleaning the membrane with compressed air at regular intervals.

담체가 첨가된 침지형 막결합 연속회분식 반응기에서 제거효율과 여과성능에 대한 담체의 효과 (The Effect of Media on the Removal Efficiency and Filtration Performance in the Submerged Membrane-Coupled Sequencing Batch Reactor with Media)

  • 김승건;이호원
    • 멤브레인
    • /
    • 제22권6호
    • /
    • pp.450-460
    • /
    • 2012
  • 스펀지 형태의 담체가 첨가된 침지형 막결합 연속회분식 생물반응기에서 담체가 제거효율과 여과성능에 미치는 영향을 조사하였다. 담체는 반응기 부피 기준으로 각각 5%, 10% 및 20% 첨가하였고, 담체를 첨가하지 않은 반응기를 대조군으로 하였다. COD, T-N 및 T-P에 대한 제거효율은 담체 첨가 유무에 관계없이 큰 차이가 없었다. 그러나 담체를 첨가한 경우, 첨가하지 않은 경우에 비해 조업시간에 따른 막간차압(TMP)은 매우 서서히 증가하였다. 이러한 결과는 폭기에 의해 상승하는 담체가 막 표면과 충돌하게 되고, 이때 막 표면에 형성된 케이크 층을 제거시키기 때문이다. 결론적으로 담체가 첨가된 막결합형 연속회분식 생물반응기는 담체가 없는 반응기에 비해 여과성능이 크게 개선되어, 폐수처리에 효과적으로 활용될 수 있을 것이다.

대칭/비대칭 사인파형 연속운전 방식에 따른 에멀젼형 절삭유 수용액 내 평막의 막간 차압 (Transmembrane Pressure of Flat-sheet Membrane in Emulsion Type Cutting Oil Solution for Symmetric/Asymmetric Sinusoidal Flux Continuous Operation Mode)

  • 원인혜;이현우;곽형준;정건용
    • 멤브레인
    • /
    • 제25권4호
    • /
    • pp.320-326
    • /
    • 2015
  • 본 연구에서는 0.5 wt% 에멀젼형 절삭유 수용액에 평막형 분리막을 침지시키고 대칭 및 비대칭 사인파형 투과유속 연속운전(SFCO) 방식으로 실험하였다. 사용한 정밀여과막은 유효 막면적이 $0.02m^2$이고 공칭 세공크기가 $0.15{\mu}m$이었다. 탁도 기준으로 에멀젼형 절삭유의 99% 이상이 제거되었으며 산기량이 증가할수록 TMP가 낮게 상승하였다. 비대칭형 SFCO 운전방식은 투과유속이 낮은 $10{\sim}15L/m^2{\cdot}h$ 영역에서 대칭형 SFCO 운전방식보다 다소 유리하였다. 하지만, 투과유속이 높은 $25{\sim}30L/m^2{\cdot}h$에서는 대칭형 SFCO 운전이 매우 효과적임을 확인할 수 있었다.

1열 원형 서브머지드 충돌수분류군에 의한 열전달의 실험적 연구 (Impingement Heat Transfer Within a Row of Submerged Circular Water Jets)

  • 엄기찬
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.538-544
    • /
    • 2010
  • An experimental investigation is presented to study the effect nozzle spacing, jet to plate spacing and Reynolds number on the local heat transfer to normally upward impinging submerged circular water jets on a flat heated surface. Nozzle arrays are a single jet(nozzle dia. = 8 mm), a row of 3 jets(nozzle dia. = 4.6 mm, nozzle spacing = 37.5 mm) and a row of 5 jets(nozzle dia. = 3.6 mm, nozzle spacing = 25 mm), and jet to plate spacing ranging from 16∼80 mm(H/D = 2∼10) is tested. Reynolds number based on single jet exit condition is varied 30000∼70000($V_o$ = 3∼7 m/s). Except for the condition of H/D = 10, the average Nusselt number of multi-jet is higher than that of single jet. For H/D = 2, average Nusselt number is increased by 50.3∼82.5% for a row of 3 jets and by 52.9∼65.2% on a row of 5 jets when compared to the average Nusselt number on the single jet.

서브머지드 단일수분류의 열전달에 관한 실험적 연구 (An experimental study of heat transfer in a submerged water jet)

  • 엄기찬
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.101-110
    • /
    • 2005
  • An experimental study of heat transfer of submerged water jet impinging normally on a flat plate is presented. Heat transfer measurements obtained with Reverse cone type nozzle(Rcone) were compared to those obtained with Cone type nozzle(Cone) and Square edged type nozzle(Vert) of the same diameter(D=8mm) for different jet velocities in the range of $3{\sim}7m/s(Re_D=30000{\sim}70000)$ and various nozzle-to target spacings($H/D=2{\sim}10$). The local Nusselt number profiles exhibited a sharp drop for $r/D{\leq}0.5$ and 2nd, 3rd peaks revealed at r/D=2, 3 respectively, followed by a slower decrease there after. The peaks were weakened with increasing the nozzle-to target spacing and decreasing the jet velocity. The stagnation Nusselt number of the Reverse cone type nozzle was larger than those of the other two nozzles for H/D=2. 10, but Cone type nozzle had the highest value for $H/D=4{\sim}8$. Also average Nusselt number of the Reverse cone type nozzle was higher than those of the other two nozzles at $H/D=2{\sim}10$, except for $V_o=7ms$ of H/D=6.

NUMERICAL METHOD IN WAVE-BODY INTERACTIONS

  • MOUSAVIZADEGAN S. H.;RAHMAN M.
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.73-91
    • /
    • 2005
  • The application of Green's function in calculation of flow characteristics around submerged and floating bodies due to a regular wave is presented. It is assumed that the fluid is homogeneous, inviscid and incompressible, the flow is irrotational and all body motions are small. Two methods based on the boundary integral equation method (BIEM) are applied to solve associated problems. The first is a low order panel method with triangular flat patches and uniform distribution of velocity potential on each panel. The second method is a high order panel method in which the kernels of the integral equations are modified to make it nonsingular and amenable to solution by the Gaussian quadrature formula. The calculations are performed on a submerged sphere and some floating spheroids of different aspect ratios. The excellent level of agreement with the analytical solutions shows that the second method is more accurate and reliable.

Mesh 스크린을 이용한 충돌제트 열전달 제어에 관한 연구 (Control of Impinging Jet Heat Transfer with Mesh Screens)

  • 조정원;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.267-271
    • /
    • 2000
  • The local heat transfer rate of an axisymmetric submerged air jet impinging on normal to a heated flat plate was investigated experimentally with varying solidity of mesh screen. The mean velocity and turbulent Intensity profiles of streamwise velocity component were measured using a hot-wire anemometry. The temperature distribution on the heated flat surface was measured with thermocouples. The screen installed in front of the nozzle exit(behind of 35mm) modify the jet flow structure and local heat transfer characteristics. For higher solidity screen, turbulence intensity at core lesion is high and increases the local heat transfer rate at nozzle-to-plate spacings(L/D<6). For larger nozzle-to-plate spacings(L/D>6), however, the turbulent Intensities of all screens tested in this study approach to an asymptotic curve, but the small mean velocity at the core region reduces the local heat transfer rate for high solidity screens.

  • PDF