DOI QR코드

DOI QR Code

Transmembrane Pressure of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Bioreactor in Coagulant Dosage

침지식 평막 MBR 내 응집제 투여에 따른 사인파형 연속투과 운전 방식의 막간차압

  • Won, In Hye (Department of Chemical and Biomolecular Engineering Seoul National University of Science and Technology) ;
  • Kim, Dae Chun (Department of Chemical and Biomolecular Engineering Seoul National University of Science and Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering Seoul National University of Science and Technology)
  • 원인혜 (서울과학기술대학교 화공생명공학과) ;
  • 김대천 (서울과학기술대학교 화공생명공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2015.01.12
  • Accepted : 2015.01.26
  • Published : 2015.02.28

Abstract

In this study transmembrane pressure (TMP) was measured with respect to operational time in order to estimate fouling of the submerged membrane in the membrane bioreactor(MBR). The microfiltration flat sheet module which has $0.02m^2$ of effective area and $0.15{\mu}m$ nominal pore size was submerged in the activated sludge solution of MLSS 5,000 mg/L. The permeate experiments were carried out simultaneously to compare TMP of the run/stop (R/S) with that of the sinusoidal flux continuous operation (SFCO). TMP for SFCO mode was up to 93% lower than that of R/S mode, and the effect of TMP drop reduced as permeate flux increased. Also, TMP of the SCFO mode was maintained below 40% of the limited operating TMP 55 kPa until the permeate operational time extended to longer than 5 times for the case as the coagulant $FeCl_3$ was dosed into the activated sludge solution with 500 mg/L concentration.

본 연구에서는 MBR 내에 침지된 분리막 오염을 평가하기 위하여 운전시간에 따른 막간차압(TMP)을 측정하였다. 유효 막면적이 $0.02m^2$이고 공칭 세공크기가 $0.15{\mu}m$인 정밀여과용 평막 모듈을 MLSS 5,000 mg/L인 활성슬러지 용액에 침지시켰다. 운전/휴직(R/S) 및 사인파형 투과유속 연속운전(SFCO) 방식에 따른 TMP를 비교하기 위하여 동시에 투과 실험을 수행하였다. SFCO 운전방법에 따른 TMP는 R/S에 비하여 최대 93% 낮게 유지되었으며 투과유속이 증가함에 따라서 TMP 감소 효과는 줄어들었다. 또한 응집제인 $FeCl_3$를 활성슬러지 용액에 500 mg/L 농도로 주입시키면 SCFO 운전방식의 경우, 투과 운전시간을 5배 이상 증가시켜도 한계 운전 TMP인 55 kPa의 40% 미만으로 유지됨을 확인할 수 있었다.

Keywords

References

  1. M. Mayhew and T. Stephenson, "Low biomass yield activated sludge: A review." Environ. Technol., 18, 883 (1997). https://doi.org/10.1080/09593331808616607
  2. K. Sutherland, "The rise of membrane bioreactors", Filtration & Separation, 47, 14 (2010).
  3. A. Fenu, J. Roels, T. Wambecq, K. De Gussem, C. Thoeye, G. De Gueldre, and B. V. D. Steene, "Energy audit of a full scale MBR system", Desalination, 262, 121 (2010). https://doi.org/10.1016/j.desal.2010.05.057
  4. A. santos, W. Ma, and S. J. Judd, "Membrane bioreactors: Two decades of reserch and implementation", Desalination, 273, 148 (2011). https://doi.org/10.1016/j.desal.2010.07.063
  5. F. Meng, S. R. Chae, A. Drews, M. Kraume, H.-S. Shin, and F. Yang, "Recent advances in membrane bioreactors (MBRs) : Membrane fouling and membrane material", Water Research, 43, 1489 (2009). https://doi.org/10.1016/j.watres.2008.12.044
  6. J. Y. Park and J. H. Hwang, "Hybrid Water Treatment of Photocatalyst Coated Polypropylene Beads and Ceramic Membranes: Effect of Membrane and Water Back-flushing Period", Membr. J., 23, 211 (2013).
  7. F. Wicaksana, A. G. Fane, and V. Chen, "Fibre movement induced by bubbling using submerged hollow fibre membranes", J. Membr. Sci., 271, 186 (2006). https://doi.org/10.1016/j.memsci.2005.07.024
  8. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of Gel Layer Removal for Intermittent Aeration in the MBR Process", Membr. J., 16, 188 (2006).
  9. K. G. Song, Y. Kim, and K. H. Ahn, "Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor", Desalination, 221, 467 (2008). https://doi.org/10.1016/j.desal.2007.01.107
  10. K. Y. Kim, J. H. Kim, Y. H. Kim, and H. S. Kim, "The Effect of Coagulant on Filtration Performance in Submerged MBR System", Membr. J., 16, 182 (2006).
  11. S. Yoon, J. Collins, D. Musale, S. Sundararajan, S. Tsai, A. Hallsby, J. Kong, J. Koppes, and P. Cachia, "Effects of flux enhancing polymer on the characteristics of sludge in membrane bioreactor process", Water Sci. Technol., 51, 151 (2005).
  12. S. Yoon, J. Collins, D. Musale, S. Sundararajan, S. Tsai, A. Hallsby, J. Kong, J. Koppes, P. Cachia, D. Chung, and K. Kronoveter, IWA Water Environment and Membrane Technology Conference, Seoul, Korea (2004).
  13. T. Tran, S. Gray, R. Naughton, and B. Bolto, "Polysilicato-iron for improved NOM removal and membrane performance", J. Membr. Sci., 280, 560 (2006). https://doi.org/10.1016/j.memsci.2006.02.013
  14. H. Koseoglu, N. O. Yigit, V. Iversen, A. Drews, M. Kitis, B. Lesjean, and M. Kraume, "Effects of several different flux enhancing chemicals on filterability and fouling reduction of membrane bioreactor (MBR) mixed liquors", J. Membr. Sci., 320, 57 (2008). https://doi.org/10.1016/j.memsci.2008.03.053
  15. K. Y. Chung, D. C. Kim, and I. H. Won, "Method for Reducing Membrane Fouling in the Water Treatment Apparatus", Korean Patent, 10-2014-0149394 (2014).
  16. I. H. Won and K. Y. Chung, "Characteristics of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Module in Cutting Oil Solution", Korean Chem. Eng. Res., in press (2015).