• Title/Summary/Keyword: Sub-structuring method

Search Result 19, Processing Time 0.027 seconds

Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (I) - Undamped Structural Systems - (부구조화 기법을 연동한 반복적인 동적 축소법 (I) - 비감쇠 구조 시스템 -)

  • Choi, Dong-Soo;Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.211-220
    • /
    • 2007
  • This work presents an iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for large structures. Iterated IRS methods are usually more efficient than others because the dynamic condensation matrix is updated repeatedly until the desired convergent values are obtained. However, using these methods simply for large structures causes expensive computational cost and even makes analyses intractable because of the limited computer storage. Therefore, the application of sub-structuring scheme is necessary. Because the large structures are subdivided into several (or more) sub-domains, the construction of dynamic condensation matrix does not require much computation cost in every iteration. This makes the present method much more efficient to compute the eigenpairs both in lower and intermediate modes. In Part I, iterated IRS method combined with sub-structuring scheme for undamped structures is presented. The validation of the proposed method and the evaluation of computational efficiency are demonstrated through the numerical examples.

An efficient seismic analysis technique for PCSG assembly using sub-structuring method and homogenization method

  • Gyogeun Youn;Wanjae Jang;Gyu Mahn Lee;Kwanghyun Ahn;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2120-2130
    • /
    • 2024
  • This study significantly reduced the seismic analysis time of PCSG assembly by introducing a reduced model using homogenization and sub-structuring methods. The homogenization method was applied to the primary and secondary micro-channel sheets, and the sub-structuring method was applied to the PCSG module sets. Modal analysis and frequency response analysis were then performed to validate the accuracy of the reduced model. The analysis results were compared with the full model and it was confirmed that the reduced model provided almost the same analysis results as the full model. To verify the computational efficiency of the reduced model, the computational time was then compared with the full model, and it was confirmed that the modal analysis time was reduced by 3.42 times and the frequency response analysis time was reduced by 4.59 times.

Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (II) - Nonclassically Damped Structural Systems - (부구조화 기법을 연동한 반복적인 동적 축소법 (II) - 비비례 감쇠 구조 시스템 -)

  • Choi, Dong-Soo;Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.221-230
    • /
    • 2007
  • An iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for nonclassically damped structural systems is presented. For dynamic analysis of such systems, complex eigenproperties are required to incorporate properly the nonclassical damping effect. In complex structural systems, the equations of motion are written in the state space from. Thus, the number of degrees of freedom of the new equations of motion and the size of the associated eigenvalue problem required to obtain the complex eigenvalues and eigenvectors are doubled. Iterated IRS method is an efficient reduction technique because the eigenproperties obtained in each iteration step improve the condensation matrix in the next iteration step. However, although this reduction technique reduces the size of problem drastically, it is not efficient to apply this technique to a single domain finite element model with degrees of freedom over several thousands. Therefore, for a practical application of the reduction method, accompanying sub-structuring scheme is necessary. In the present study, iterated IRS method combined with sub-structuring scheme for nonclssically damped structures is developed. Numerical examples demonstrate the convergence and the efficiency of a newly developed scheme.

Evaluation of subway-induced vibration in building using sub-structuring method (Sub-structuring 기법을 이용한 지하철 인접 구조물의 진동 예측에 관한 연구)

  • Kang, Deok-Shing;Kong, Boo-Seong;Kim, Hyo-Beom;Jeong, Min-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.635-635
    • /
    • 2014
  • 최근 지하철 인접 부지에 고층 주거 시설이 입지함에 따라 지하철 통행시의 소음 및 진동관련 민원이 증가하고 있는 추세이다. 따라서, 지하철 인접에 위치하는 구조물의 경우 계획단계에서부터 지하철로 인한 소음 및 진동 문제를 예측하고 평가하는 과정이 필수적이다. 건물이 시공되기 전 지하철 통행으로 인하여 건물에 유입되는 진동을 예측 및 평가하기 위해서는 해석적 방법으로 접근해야 하며, 본 연구에서는 sub-structuring method를 활용한 지하철 진동 해석 방법과 실제 구조물에 적용한 사례를 제시한다.

  • PDF

Sub-structuring Technique of High-speed Train-bridge Interaction Analysis for Foundation Design (기초 설계를 위한 고속철도 교량-열차 상호작용 해석의 부구조화 기법)

  • Lee, Kang-Il;Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2021
  • In this paper, the sub-structuring technique-applied train-bridge interaction analysis model, which is formulated based on the simplified three-dimensional train-bridge interaction analysis model for high-speed bridge-train interaction analysis, is presented. In the sub-structuring technique, the super-structure and the supporting structure of railway bridges can be modeled as sub-structures, and train-bridge interaction analysis can be efficiently performed. As a train analysis model, two-dimensional train model is used, and the Lagrange equation of motion is applied to derive the equation of motion of two-dimensional train. In the sub-structuring technique, the number of degrees of freedom can be reduced by using the condensation method, thus reducing the time and cost for calculating the eigenvalues and eigenvectors, and the time and cost for the subsequent calculation. In this paper, Guyan reduction method is used as sub-structuring technique. By combining simplified three-dimensional bridge-train interaction analysis and Guyan reduction method, the efficient and accurate bridge-train interaction analysis can be performed.

Study on the Structural System Condensation using Multi-level Sub-structuring Scheme in Large-scale Problems (대형 시스템에서의 다단계 부분구조 기법을 이용한 시스템 축소기법에 관한 연구)

  • Baek, Sung-Min;Kim, Hyun-Gi;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.356-361
    • /
    • 2008
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. And we have improved previous TLCS with combination of the iterated improved reduced system method (IIRS) to increase accuracy of the higher modes intermediate range. In this study, we apply previous improved TLCS to multi-level sub-structuring scheme. In the first step, the global system is recursively partitioned into a hierarchy of sub-domain. In second step, each uncoupled sub-domain is condensed by the improved TLCS. After assembly process of each reduced sub-eigenvalue problem, eigen-solution is calculated by Lanczos method (ARPACK). Finally, Numerical examples demonstrate performance of proposed method.

  • PDF

CO2 Laser micro-structuring of optical fiber with negative conical shape (CO2 레이저를 이용한 음각 원뿔 구조 광섬유 팁 가공 최적화 연구)

  • Yoo, Dongyoon;Choi, Hun-Kook;Sohn, Ik-Bu;Noh, Young-Chul;Jung, Deok;Kim, Young-Sup;Lee, Ho;Kim, Chang-Hwan
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.14-19
    • /
    • 2015
  • A helical fabricating method using $CO_2$ laser was utilized for producing cone-shaped structure on a silica substrate. Output power and the number of scanning radiation were modified in order to control the structure. The experiment shows that the depth and width of cone-shape were increased with higher output power of the laser and the number of scanning. We demonstrate fabrication of multidirectional side-firing optical fiber with diameter of 440 um using the $CO_2$ laser fabrication technique.

Study on the Structural System Condensation Using Multi-level Sub-structuring Scheme in Large-scale Problems (대형 시스템에서의 다단계 부분구조 기법을 이용한 시스템 축소기법에 관한 연구)

  • Baek, Sung-Min;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.281-285
    • /
    • 2008
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. And we have improved previous TLCS with combination of the iterated improved reduced system method (IIRS) to increase accuracy of the higher modes intermediate range. In this study, we apply previous improved TLCS to multi-level sub-structuring scheme. In the first step, the global system is recursively partitioned into a hierarchy of sub-domain. In second step, each uncoupled sub-domain is condensed by the improved TLCS. After assembly process of each reduced sub-eigenvalue problem, eigen-solution is calculated by Lanczos method (ARPACK). Finally, Numerical examples demonstrate performance of proposed method.

The transient and frequency response analysis using the multi-level system condensation in the large-scaled structural dynamic problem

  • Baek, Sungmin;Cho, Maenghyo
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.429-441
    • /
    • 2011
  • In large-scale problem, a huge size of computational resources is needed for a reliable solution which represents the detailed description of dynamic behavior. Recently, eigenvalue reduction schemes have been considered as important technique to resolve computational resource problems. In addition, the efforts to advance an efficiency of reduction scheme leads to the development of the multi-level system condensation (MLSC) which is initially based on the two-level condensation scheme (TLCS). This scheme was proposed for approximating the lower eigenmodes which represent the global behavior of the structures through the element-level energy estimation. The MLSC combines the multi-level sub-structuring scheme with the previous TLCS for enhancement of efficiency which is related to computer memory and computing time. The present study focuses on the implementation of the MLSC on the direct time response analysis and the frequency response analysis of structural dynamic problems. For the transient time response analysis, the MLSC is combined with the Newmark's time integration scheme. Numerical examples demonstrate the efficiency of the proposed method.