DOI QR코드

DOI QR Code

An efficient seismic analysis technique for PCSG assembly using sub-structuring method and homogenization method

  • Gyogeun Youn (SMART System Development Division, Korea Atomic Energy Research Institute) ;
  • Wanjae Jang (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Gyu Mahn Lee (SMART System Development Division, Korea Atomic Energy Research Institute) ;
  • Kwanghyun Ahn (SMART System Development Division, Korea Atomic Energy Research Institute) ;
  • Seongmin Chang (School of Mechanical Engineering, Chungnam National University)
  • Received : 2023.11.23
  • Accepted : 2024.01.14
  • Published : 2024.06.25

Abstract

This study significantly reduced the seismic analysis time of PCSG assembly by introducing a reduced model using homogenization and sub-structuring methods. The homogenization method was applied to the primary and secondary micro-channel sheets, and the sub-structuring method was applied to the PCSG module sets. Modal analysis and frequency response analysis were then performed to validate the accuracy of the reduced model. The analysis results were compared with the full model and it was confirmed that the reduced model provided almost the same analysis results as the full model. To verify the computational efficiency of the reduced model, the computational time was then compared with the full model, and it was confirmed that the modal analysis time was reduced by 3.42 times and the frequency response analysis time was reduced by 4.59 times.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020M2D7A1079180 and RS-2023-00278230).

References

  1. Y.W. Kim, Basic Design Report for SMART Steam Generator, Korea Atomic Energy Research Institute, 2002. KAERI/TR-2127/2002.
  2. L. Liu, J. Fan, Technology readiness assessment of small modular reactor (SMR) designs, Prog. Nucl. Energy 70 (2014) 20-28.
  3. H.O. Kang, H.S. Han, Y.J. Kim, K.K. Kim, Thermal-hydraulic design of a printed-circuit steam generator for integral reactor, KSFM J. Fluid, March. 17 (2014) 77-83.
  4. S.W. Seo, J.Y. Lee, S.J. Kim, Status of Manufacturing Experimental Apparatus to Investigate SWR Phenomenon in the PCSG, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2019.
  5. J.S. Kwon, D.H. Kim, S.G. Shin, J.I. Lee, S.J. Kim, Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator, Nucl. Eng. Technol. 54 (2022) 1085-1097.
  6. S.J. Kim, T.W. Kim, Design methodology and computational fluid analysis for the printed circuit steam generator, J. Mech. Sci. Technol. 34 (2020) 5303-5314.
  7. Y.J. Lee, S.J. An, S.W. Lim, 1-D PCSG model development for preliminary safety analysis of SMART Plus, in: Transactions of the Korean Nuclear Society Virtual Autumn Meeting, 2021.
  8. C.W. Shin, H.C. No, Experimental study for pressure drop and flow instability of two-phase flow in the PCHE-type steam generator for SMRs, Nucl. Eng. Des. 318 (2017) 109-118.
  9. X. Yuan, L. Yang, Z. Shang, Experimental and numerical investigation on flow boiling in a small semi-circular channel of plate once-through steam generator, Heat Tran. Eng. 43 (2022) 208-222.
  10. I.H. Kim, H.C. No, J.I. Lee, B.G. Jeon, Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations, Nucl. Eng. Des. 239 (2009) 2399-2408.
  11. A.D. Ronco, A. Cammi, S. Lorenzi, Preliminary analysis and design of the heat exchangers for the molten salt Fast reactor, Nucl. Eng. Technol. 52 (2020) 51-58.
  12. G.G. Youn, W.J. Jang, Y.J. Jeon, K.H. Lee, G.M. Lee, J.S. Lee, S. Chang, Structural integrity assessment procedure of PCSG unit block using homogenization method, Nucl. Eng. Technol. 55 (2023) 1365-1381.
  13. E. Sanchez-Palencia, Non-homogenous media and vibration theory, in: Volume 127 of Lecture Notes in Physics, Springer, Berlin, 1980.
  14. A. Benssousan, J.L. Lions, G. Papanicoulau, Asymptotic Analysis for Periodic Structures, AMS Chelsea Publishing, Rhode Island, 2010.
  15. D. Cioranescu, J.S.J. Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl. 71 (1979) 590-607.
  16. J.M. Guedes N. Kikuchi, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Eng. 83 (1990) 143-198.
  17. M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71 (1988) 197-224.
  18. Y.Y. Kim, Theory and Applications of Elasticity, second ed., Munundang, Seoul, 2009.
  19. S. Chang, S. Yang, H. Shin, M. Cho, Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticle, Compos. Struct. 128 (2015) 342-353.
  20. S. Weng, H. Zhu, Y. Xia, Substructuring method for eigensolutions, in: Substructuring Method for Civil Health Monitoring, Engineering Applications of Computational Methods vol. 15, Springer, Singapore, 2023.
  21. P. Seshu, Substructuring and component mode synthesis, Shock Vib. 4 (3) (1997) 199-210.
  22. S. Chang, M. Cho, Dynamic-condensation-based reanalysis by using the Sherman-Morrison-Woodbury formula, AIAA J. 59 (3) (2021) 905-911.
  23. H. Chung, Z. Du, Optimized design of multi-material cellular structures by level-set method with Guyan reduction, J. Mech. Des. 143 (10) (2021) 101702.
  24. H. Sung, S. Chang, M. Cho, Component model synthesis using model updating with neural networks, Mech. Adv. Mater. Struct. 30 (2) (2023) 400-411.
  25. K. Ahn, K.H. Lee, J.S. Lee, S. Chang, 3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method, Nucl. Eng. Technol. 54 (3) (2022) 1109-1114.
  26. K.H. Lee, R.W. Hagos, S. Chang, J.G. Kim, Multiphysics mode synthesis of fluid-structure interaction with free surface, Eng. Comput. 39 (4) (2023) 2889-2904.
  27. L. Mapa, F. das Neves, G.P. Guimaraes, Dynamic Substructuring by the CraigBampton method applied to frames, J. Vib. Eng. Technol. 9 (2021) 257-266.
  28. W. Hurty, Dynamic analysis of structural systems using component modes, AIAA J. 3 (4) (1965) 678-685.
  29. R. Guyan, Reduction of stiffness and mass matrices, AIAA J. 3 (2) (1965) 380.
  30. R.R. Craig, M.C.C. Bampton, Coupling of substructures for dynamic analysis, AIAA J. 6 (7) (1968) 1313-1319.
  31. Y. Wang, R. Palacios, A. Wynn, A method for normal-mode-based model reduction in nonlinear dynamics of slender structures, Comput. Struct. 159 (2015) 26-40.
  32. J.M. Mencik, D. Duhamel, A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructure sand large-sized finite element models, Finite Elem. Anal. Des. 101 (2015) 1-14.
  33. F. Ola, P. Kent, S. Goran, Reduction methods for the dynamic analysis of substructure models of lightweight building structures, Comput. Struct. 138 (2014) 49-61.
  34. W. Chen, D. Wang, Y. Zhang, Seismic fragility analysis of nuclear power plants based on substructure method, Nucl. Eng. Des. 382 (2021) 111389.
  35. Korea Electric Association, M.D. Kepic, Material Properties (SI Unit), 2015 Edition, 2015.
  36. The American Society of Mechanical Engineers, ASME BPVC Sec. II Part D: Properties (Metric), 2015 Edition, 2015.