• Title/Summary/Keyword: Sub-optimization Problem

Search Result 157, Processing Time 0.026 seconds

A Study on Size Optimization for Rocket Motor with a Torispherical Dome (토리구형 돔 형상을 갖는 연소관의 치수 최적화 설계 연구)

  • Choi, Young-Gwi;Shin, Kwang-Bok;Kim, Won-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.567-573
    • /
    • 2010
  • In this study, we evaluated the structural integrity and weight of a rocket motor with a torispherical dome by size optimization. Size optimization was achieved by first-order and sub-problem methods, using the Ansys Parametric Design Language (APDL). For rapid design verification, a modified 2D axisymmetric finite-element model was used, and the bolt pre-tension load was expressed as function of the ratio of the cross-sectional area. The thickness of the dome and the cylindrical part of the rocket motor were selected as the design parameters. Our results showed that the weight and structural integrity of the rocket motor at the initial design stage could be determined more rapidly and accurately with the modified 2D axisymmetric finite-element model than with the 3D finite-element model; further, the weight of the rocket motor could be saved to maximum of 17.6% within safety limit.

Study of Size Optimization for Skirt Structure of Composite Pressure Vessel (복합재 압력용기의 스커트 치수 최적화 설계 연구)

  • Kim, Jun Hwan;Shin, Kwang Bok;Hwang, Tae Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • This study aims to find the optimal skirt dimensions for a composite pressure vessel with a separated dome part. The size optimization for the skirt structure of the composite pressure vessel was conducted using a sub-problem approximation method and batch processing codes programmed using ANSYS Parametric Design Language (APDL). The thickness and length of the skirt part were selected as design variables for the optimum analysis. The objective function and constraints were chosen as the weight and the displacement of the skirt part, respectively. The numerical results showed that the weight of the skirt of a composite pressure vessel with a separated dome part could be reduced by a maximum of 4.38% through size optimization analysis of the skirt structure.

Opportunistic Scheduling for Streaming services in OFDMA Systems (OFDMA 시스템에서 Streaming 서비스를 위한 Opportunistic 스케줄링 기법)

  • Kwon, Jeong-Ahn;Lee, Jang-Won
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.197-198
    • /
    • 2008
  • In this paper, we study an opportunistic scheduling scheme for the OFDMA system with streaming services. The service is modeled by using the appropriate utility function. We formulate a stochastic optimization problem that aims at maximizing network utility while satisfying the QoS requirement of each user. The problem is solved by using the dual approach and the stochastic sub-gradient algorithm.

  • PDF

Optimal Design of Superframe Pattern for DVB-RCS Return Link

  • Lee, Ki-Dong;Cho, Yong-Hoon;Lee, Seung-Joon;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.251-254
    • /
    • 2002
  • We developed a method for optimal superframe design in the multi-frequency time division multiple access (MF-TDMA) return-link of a satellite multimedia interactive network called a digital video broadcasting return channel over satellite (DVB-RCS) sub-network. To find the optimal superframe pattern with the maximum data throughput, we formulated the design problem as a non-linear combinatorial optimization problem. We also devised the proposed simple method so that it would have field applicability for improving radio resource utilization in the MF-TDMA return link.

  • PDF

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

Optimization of compression ratio in closed-loop CO2 liquefaction process

  • Park, Taekyoon;Kwak, Hyungyeol;Kim, Yeonsoo;Lee, Jong Min
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2150-2156
    • /
    • 2018
  • We suggest a systematic method for obtaining the optimal compression ratio in the multi-stage closed-loop compression process of carbon dioxide. Instead of adopting the compression ratio of 3 to 4 by convention, we propose a novel approach based on mathematical analysis and simulation. The mathematical analysis prescribes that the geometric mean is a better initial value than the existing empirical value in identifying the optimal compression ratio. In addition, the optimization problem considers the initial installation cost as well as the energy required for the operation. We find that it is best to use the fifth stage in the general closed-loop type carbon dioxide multi-stage compression process.

Extended Hub-and-spoke Transportation Network Design using a Symbiotic Evolutionary Algorithm (공생 진화알고리듬을 이용한 확장된 hub-and-spoke 수송네트워크 설계)

  • Shin Kyoung-Seok;Kim Yeo-Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.141-155
    • /
    • 2006
  • In this paper, we address an extended hub-and-spoke transportation network design problem (EHSNP). In the existing hub location problems, the location and number of spokes, and shipments on spokes are given as input data. These may, however, be viewed as the variables according to the areas which they cover. Also, the vehicle routing in each spoke needs to be considered to estimate the network cost more correctly. The EHSNP is a problem of finding the location of hubs and spokes, and pickup/delivery routes from each spoke, while minimizing the total related transportation cost in the network. The EHSNP is an integrated problem that consists of several interrelated sub-problems. To solve EHSNP, we present an approach based on a symbiotic evolutionary algorithm (symbiotic EA), which are known as an efficient tool to solve complex integrated optimization problems. First, we propose a framework of symbiotic EA for EHSNP and its genetic elements suitable for each sub-problem. To analyze the proposed algorithm, the extensive experiments are performed with various test-bed problems. The results show that the proposed algorithm is promising in solving the EHSNP.

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF

Low-Complexity Energy Efficient Base Station Cooperation Mechanism in LTE Networks

  • Yu, Peng;Feng, Lei;Li, Zifan;Li, Wenjing;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3921-3944
    • /
    • 2015
  • Currently Energy-Saving (ES) methods in cellular networks could be improved, as compensation method for irregular Base Station (BS) deployment is not effective, most regional ES algorithm is complex, and performance decline caused by ES action is not evaluated well. To resolve above issues, a low-complexity energy efficient BS cooperation mechanism for Long Time Evolution (LTE) networks is proposed. The mechanism firstly models the ES optimization problem with coverage, resource, power and Quality of Service (QoS) constraints. To resolve the problem with low complexity, it is decomposed into two sub-problems: BS Mode Determination (BMD) problem and User Association Optimization (UAO) problem. To resolve BMD, regional dynamic multi-stage algorithms with BS cooperation pair taking account of load and geographic topology is analyzed. And then a distributed heuristic algorithm guaranteeing user QoS is adopted to resolve UAO. The mechanism is simulated under four LTE scenarios. Comparing to other algorithms, results show that the mechanism can obtain better energy efficiency with acceptable coverage, throughput, and QoS performance.

Joint Relay Selection and Resource Allocation for Delay-Sensitive Traffic in Multi-Hop Relay Networks

  • Sha, Yan;Hu, Jufeng;Hao, Shuang;Wang, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3008-3028
    • /
    • 2022
  • In this paper, we investigate traffic scheduling for a delay-sensitive multi-hop relay network, and aim to minimize the priority-based end-to-end delay of different data packet via joint relay selection, subcarrier assignment, and power allocation. We first derive the priority-based end-to-end delay based on queueing theory, and then propose a two-step method to decompose the original optimization problem into two sub-problems. For the joint subcarrier assignment and power control problem, we utilize an efficient particle swarm optimization method to solve it. For the relay selection problem, we prove its convexity and use the standard Lagrange method to deal with it. The joint relay selection, subcarriers assignment and transmission power allocation problem for each hop can also be solved by an exhaustive search over a finite set defined by the relay sensor set and available subcarrier set. Simulation results show that both the proposed routing scheme and the resource allocation scheme can reduce the average end-to-end delay.