• Title/Summary/Keyword: Sub-frame

Search Result 414, Processing Time 0.024 seconds

Investigations of Structural Behaviors of Steel Tower Structures by Frame Shape Variation (철탑구조의 트러스형상 변화에 따른 구조거동 분석)

  • Moon, Mi Young;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The purpose of this study is to analyze the ultimate strength and behavior of triangular and rectangular frames in steel towers. Investigations of collapse mechanism including local and global failures of partial frame are carried out through finite element analysis and small scaled experiments. Ultimate strength and deformation are investigated in case of shape variations with change of the interior and exterior frames. The efficiency of rectangular frame saving sub-brace members are verified with comparisons of the ultimate strength of triangular frames.

Progressive Compression of 3D Mesh Geometry Using Sparse Approximations from Redundant Frame Dictionaries

  • Krivokuca, Maja;Abdulla, Waleed Habib;Wunsche, Burkhard Claus
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • In this paper, we present a new approach for the progressive compression of three-dimensional (3D) mesh geometry using redundant frame dictionaries and sparse approximation techniques. We construct the proposed frames from redundant linear combinations of the eigenvectors of a combinatorial mesh Laplacian matrix. We achieve a sparse synthesis of the mesh geometry by selecting atoms from a frame using matching pursuit. Experimental results show that the resulting rate-distortion performance compares favorably with other progressive mesh compression algorithms in the same category, even when a very simple, sub-optimal encoding strategy is used for the transmitted data. The proposed frames also have the desirable property of being able to be applied directly to a manifold mesh having arbitrary topology and connectivity types; thus, no initial remeshing is required and the original mesh connectivity is preserved.

A NEW CONSTRUCTION OF TIMELIKE RULED SURFACES WITH CONSTANT DISTELI-AXIS

  • Abdel-Baky, Rashad A.;Unluturk, YasIn
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.551-568
    • /
    • 2020
  • In this study, we construct timelike ruled surfaces whose Disteli-axis is constant in Minkowski 3-space 𝔼31. Then we attain a general system characterizing these surfaces, and also give necessary and sufficient conditions for a timelike ruled surface to get a constant Disteli-axis.

Development of Stress Evaluation Equation of Circular Column-Box Beam Connections (원형기둥-상자형보 접합부의 응력평가식 개발)

  • 이주혁;김정환;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.227-234
    • /
    • 2003
  • This study presents the stress evaluation equations of circular column-box beam connection in steel frame piers. FEM analysis were carried out for circular column-box beam connection. Analysis models were made for design parameters such as joint angle, span length-width ratio(L/B), sectional-area ratio(S=A/sub w/A/sub f/), and circular column-box beam stiffness ratio(Ic/Ib). Analysis results were compared to the existing equation. Based on analysis results the stress evaluation equations of circular column-box beam connection are proposed by regression analysis.

  • PDF

AN APPROACH FOR HYPERSURFACE FAMILY WITH COMMON GEODESIC CURVE IN THE 4D GALILEAN SPACE G4

  • Yoon, Dae Won;Yuzbasi, Zuhal Kucukarslan
    • The Pure and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.229-241
    • /
    • 2018
  • In the present study, we derive the problem of constructing a hypersurface family from a given isogeodesic curve in the 4D Galilean space $G_4$. We obtain the hypersurface as a linear combination of the Frenet frame in $G_4$ and examine the necessary and sufficient conditions for the curve as a geodesic curve. Finally, some examples related to our method are given for the sake of clarity.

A NOTE ON INEXTENSIBLE FLOWS OF CURVES WITH FERMI-WALKER DERIVATIVE IN GALILEAN SPACE G3

  • Bozok, Hulya Gun;Sertkol, Ipek Nizamettin
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.769-780
    • /
    • 2020
  • In this paper, Fermi-Walker derivative for inextensible flows of curves are researched in 3-dimensional Galilean space G3. Firstly using Frenet and Darboux frame with the help of Fermi-Walker derivative a new approach for these flows are expressed, then some results are obtained for these flows to be Fermi-Walker transported in G3.

On f-cosymplectic and (k, µ)-cosymplectic Manifolds Admitting Fischer -Marsden Conjecture

  • Sangeetha Mahadevappa;Halammanavar Gangadharappa Nagaraja
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.507-519
    • /
    • 2023
  • The aim of this paper is to study the Fisher-Marsden conjucture in the frame work of f-cosymplectic and (k, µ)-cosymplectic manifolds. First we prove that a compact f-cosymplectic manifold satisfying the Fisher-Marsden equation R'*g = 0 is either Einstein manifold or locally product of Kahler manifold and an interval or unit circle S1. Further we obtain that in almost (k, µ)-cosymplectic manifold with k < 0, the Fisher-Marsden equation has a trivial solution.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.