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Abstract. The aim of this paper is to study the Fisher-Marsden conjucture in the frame

work of f -cosymplectic and (k, µ)-cosymplectic manifolds. First we prove that a compact

f -cosymplectic manifold satisfying the Fisher-Marsden equation R
′∗
g = 0 is either Einstein

manifold or locally product of Kahler manifold and an interval or unit circle S1. Further

we obtain that in almost (k, µ)-cosymplectic manifold with k < 0, the Fisher-Marsden

equation has a trivial solution.

1. Introduction

Let ℑ denote the set of all smooth Riemannian metrics on a 2n + 1,(n > 1)-
dimensional closed, connected and orientable Riemannian manifold (M, g) of unit
volume, whose derivatives are L2-integrable. Then for any g ∈ ℑ we can define the
scalar curvature operator from ℑ to the set of all C∞ functions ℜ on M , which
is quasi linear differential operator of second order. Here we can see that for any
g ∈ ℑ its scalar curvature Rg is a non-linear function of the metric g. So that the

linearization of Rg is R
′

g(g), for any symmetric bilinear 2-tensor g such that

R
′

g(g) = −△g(trgg) + δδ(g)− g(Ricg, g),

where tr is the trace, δδ is the double covariant divergence, △g is the Laplacian,
Ricg is the Ricci curvature tensor of g and g is the (0, 2) symmetric tensor on the
manifold M .

Now it is easy to derive the L2-adjoint operator Rg
′∗ of Rg

′
, which linearizes

the scalar curvature operator Rg
′
and it is given by

Rg
′∗(λ) = −(△gλ)g +∇2

gλ− λRicg,(1.1)
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where ∇2
gλ is the Hessian of the smooth function λ on M . On contracting the above

equation, we obtain

v = △gλ = −Rgλ

2n
.(1.2)

Here we designate Rg
′∗(λ) = 0 as Fischer-Marsden equation and the ordered pair

(g, λ) is the solution for the Fischer-Marsden equation.

In [4], Bourguignon and in [3], Fischer-Marsden proved that if (g, λ) is a non-
trivial solution for the equation Rg

′∗(λ) = 0 on the complete Riemannian manifold
then the scalar curvature of the manifold is constant. Corvino [8] showed that on
a compact Riemannian manifold, the warped product metric g∗ = g − λ2dt2 has a
non-trivial solution for the Fischer Marsden equation Rg

′∗(λ) = 0 if and only if the
metric is Einstein.

In[17] Shen studied the Fischer Marsden conjecture using some ideas of general
relativity and find Robinson-type identity for the over determined system of partial
differential equation and they also showed that if a 3-dimensional closed manifold
of positive curvature has a non-trivial solution for the over determined system then
the manifold contains a totally geodesic 2-sphere.

We call back Fischer-Marsden conjecture in [10] as ”A compact Riamannian
manifold that satisfies the equation Rg

′∗(λ) = 0 with non-trivial solution is neces-
sarily an Einstein manifold”.

Later Kobayashi gave the counter example for the Fischer-Marsden Conjecture
in [11]. However J. Lafontaine [12] also showed the counter example for the con-
jecture when metric g is conformally flat. The counter examples showed in [11]
and [12], almost all are homogeneous, but we can see the non-homogeneous counter
examples for Fischer-Marsden equation which are proved by Cernea and Guan in
[5].

Furthermore they showed that for closed homogeneous Riemannian manifold
(Mn, g), if λ is the non-trivial solution of the Fischer-Marsden equation Rg

′∗(λ) = 0
then M is isomorphic to Sp × N , where Sp denotes the Euclidean sphere and N
represents the Einstein manifold. In [15] Patra and Ghosh studied the Fischer-
Marsden conjecture in the frame work of K-contact and (k, µ)-contact manifolds and
proved that, if λ is non-trivial solution of the Fischer Marsden equation Rg

′∗(λ) =
0 for complete K-contact manifold then it is Einstein and isometric to the unit
sphere of dimension (2n + 1). Further they considered the non-trivial solution for
the Fischer-Marsden equation in the case of (k, µ)-contact metric manifold of non-
Sasakian type of dimension (2n+ 1) and showed that for n = 3, M3 is flat and for
n > 1, M2n+1 is locally isometric to En+1 × Sn(4).

Later in [13] Li studied the Fischer-Marsden conjecture and gave a counter
example to the conjecture on vacuum static spaces. Recently Mandal [17] showed
that if, 3-dimensional non-Kenmotsu (k, µ)

′
-almost Kenmotsu manifold satisfies the

Fischer-Marsden equation then it is locally isometric to the product space H2(−4)×
R, along with this they also showed that, if conformal Reeb foliation admits the
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Fischer Marsden equation in complete almost Kenmotsu manifold then the manifold
is Einstein.

Further Prakasha et. al., [16] and Chaubey et. al., [6] studied the conjecture
for non-Kenmotsu (k, µ)

′
-almost Kenmotsu manifold of dimension (2n + 1) and

Kenmotsu manifold respectively and proved some interesting results.

Motivated by the above research, we examine the properties of f-cosymplectic
and (k, µ) cosymplectic manifolds satisfying Fischer Marsden equation.

2. Preliminaries

LetM be a differential manifold of dimension (2n+1) admitting a triple (ϕ, ξ, η),
where ϕ is the (1, 1) tensor such that ϕ2 = −I + η⊗ ξ, ξ is the unit vector field and
η is the global 1-form satisfying η∧ (dη)n ̸= 0 everywhere on M such that η(ξ) = 1,
ϕξ = 0, η ◦ ϕ = 0 and rankϕ = 2n. Now M along with the triple (ϕ, ξ, η) is called
almost contact manifold. A Riemannian metric g on M is said to be compatible if
g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ) and g(X, ξ) = η(X), for all vector fields X and
Y on M . An almost contact structure along with the Riemannian metric is called
almost contact metric structure and (M,ϕ, ξ, η, g) is called almost contact metric
manifold. An almost contact metric structure is normal if Nijehuis torsion tensor

Nϕ(X,Y ) = ϕ2[X,Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]− 2dη[X,Y ]ξ,

vanishes everywhere on M .

By defining a fundamental 2-form ω(X,Y ) = g(ϕX, Y ) for all X,Y ∈ TM ,
if 1-form η and ω are closed on an almost contact manifold (M,ϕ, ξ, η) then the
structure (ϕ, ξ, η) becomes almost cosymplectic. If almost cosymplectic structure
is normal then it is called cosymplectic. Similarly an almost contact structure
with closed η and dω = 2αη ∧ ω for some non-zero constant α is called almost
α-Kenmotsu manifold. If α is any real number then the almost contact structure
becomes α-almost cosymplectic manifold [8].

Aktan et. al., [1] generalizes the almost α-cosymplectic manifold to almost f -
cosymplectic manifold by assuming real number α to be any smooth function f
on M in which dη = 0 and dω = 2fη ∧ ω for some smooth function f satisfying
df ∧ η = 0. Similarly, if M is normal then almost f -cosymplectic structure becomes
f -cosymplectic. Clearly, a f -cosymplectic manifold becomes either α-Kenmotsu
manifold or cosymplectic manifold concerning the condition α is a non-zero real
number or f = 0 respectively. Further D = kerη, distribution on f -cosymplectic
manifold exists and integrable since dη = 0. For an almost contact manifold we can
define a self adjoint operator h = 1

2Lξϕ and h
′
= h◦ϕ satisfying tr(h) = tr(hϕ) = 0,

hξ = 0 and ϕh = −hϕ for all vector fields X and Y on M .

Let M be an f -cosymplectic manifold. The Levi-civita connection ∇ on M is
given by

2g((∇Xϕ)Y,Z) = 2fg(g(ϕX, Y )ξ − η(X)ϕX,Z) + g(Nϕ(Y, Z), ϕX),
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which implies

∇Xξ = −fϕ2X − ϕhX and ∇ξϕ = 0,(2.1)

for any vector fields X and Y on M .
Moreover, if (M2n+1, ϕ, ξ, η, g) is an almost f -cosymplectic manifold then it

satisfies the following equations [14],

R(X, ξ)ξ − ϕR(ϕX, ξ) = 2[f̃ϕ2X − h2X],(2.2)

Ric(ξ, ξ) = −2nf̃ − tr(h2),(2.3)

R(X, ξ)ξ = f̃ϕ2X − 2fϕhX − h2X + ϕ(∇ξh)X,(2.4)

(∇ξh)X = −ϕR(X, ξ)ξ − f2ϕX − 2fhX − ϕh2X,(2.5)

for every vector fields X and Y on M , where

f̃ = f2 + (ξf).(2.6)

In the following sections (M,ϕ, ξ, η, g) denotes an almost f -cosymplectic mani-
fold of dimension (2n+ 1) which is normal so implies that h = 0 [9].

3. f-cosymplectic Manifold Satisfying Fischer-Marsden Equation

In this section, we study the f -cosymplectic satisfying (1.1) with Rg
′∗(λ) = 0.

Therefore M is a f -cosymplectic manifold of dimension (2n+1) and by Proposition
9 and Proposition 10 of [14], we have the following:

∇Xξ = −fϕ2X,(3.1)

Qξ = −2nf̃ξ,(3.2)

R(X,Y )ξ = f̃ [η(X)Y − η(Y )X],(3.3)

where ∇ is a Levi Civita connection and Q is the Ricci Operator on M .
We use the following results later.
Proposition 3.1.([15]) In a f-cosymplectic manifold, if (ξf̃) = 0, then f̃ is constant.

Proposition 3.2.([15]) A compact f-cosymplectic manifold M2n+1 with (ξf̃) = 0 is
α-cosymplectic. In particular if f̃ = 0, M is cosymplectic.

Proposition 3.3.([4]) Let M be a cosymplectic manifold. It is a local product of a
Kahler manifold and an interval or unit sphere S1.

Proposition 3.4.([14]) Let M be an almost f-cosymplectic manifold of dimension
(2n + 1) and M̃ be an integral manifold of a distribution D of M defined by D =
kerη. Then
1. when f = 0, M̃ is totally geodesic if and only if the operator h vanishes.
2. when f ̸= 0, M̃ is totally umbilic if and only if the operator h vanishes.
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Lemma 3.5.([1]) Let M be a (2n+1)-dimensional contact metric manifold having
the non-trivial solution (g, λ) for the Fischer-Marsden equation Rg

′∗(λ) = 0. Then
the Riemannian curvature tensor can be expressed as

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX − λ{(∇XQ)Y − (∇Y Q)X}(3.4)

+ (Xv)Y − (Y v)X,

where v = −rλ
2n . 2

We now consider an f -cosymplectic manifold M satisfying Fischer-Marsden equa-
tion:
Theorem 3.6. Let (M,ϕ, ξ, η, g) be a compact f -cosymplectic manifold. Sup-
pose that M admits a non-trivial solution (g, λ) for the Fischer -Marsden equation
Rg

′∗(λ) = 0 with (ξf̃) = 0 then either M is Einstein or M is locally a product of a
Kahler manifold and an interval or unit circle S1.

Proof. Replacing ξ with X in (3.4), employing (3.2) and (3.3), we get

f̃ {(ξλ)g(X,Y )− (Y λ)η(X)} = (ξλ− λf)Ric(X,Y )(3.5)

+
{
2nf̃(Y λ)− λ(Y f̃)− (Y v)

}
η(X)−

{
λ(ξf̃) + 2nλff̃ − (ξv)

}
g(X,Y ).

Now antisymmetrizing the above equation, we have{
2nf̃(Y λ) + λ(Y f̃)− (Y v) + f̃(Y λ)

}
η(X)(3.6)

=
{
2nf̃(Xλ) + λ(Xf̃)− (Xv) + f̃(Xλ)

}
η(Y ).

Replacing X by ϕX and taking Y = ξ in the above equation, we get

(2n+ 1)f̃ϕDλ+ λϕDf̃ − ϕDv = 0.(3.7)

Notice that from the Proposition 3.1., if (ξf̃) = 0 then f is a constant. Hence the
above equation becomes

(2n+ 1)f̃ϕDλ = ϕDv.(3.8)

From [7], we can see that if (g, λ) is non-trivial solution of the equation (1.1), then
the scalar curvature Rg is constant. By virtue of (1.2), we thus obtain

2nDv = −RgDλ.(3.9)

From (3.8) and (3.9), we arrive at

(2n(2n+ 1)f̃ +Rg)ϕDλ = 0.(3.10)

From this we conclude that either Rg = −2n(2n+ 1)f̃ or ϕDλ = 0.

Suppose Rg = −2n(2n+ 1)f̃ . Then (3.9) gives

X(v) = (2n+ 1)f̃(Xλ), ξv = (2n+ 1)f̃(ξλ).(3.11)
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Therefore by replacing X by ξ in (3.4) and then by using (3.2) and Qξ = −2nf̃ξ,
we find

R(ξ, Y )Dλ = (ξλ− λf)QY +
{
2n(λ)f̃ − λ(Y f̃)− (2n+ 1)f̃(Y λ)

}
ξ(3.12)

−
{
λ(ξf̃) + 2nλff̃ − (2n+ 1)f̃(ξλ)

}
Y,

for all vector fields Y on M . Making use of equation (3.3), we get

R(ξ,X)Dλ = f̃ {(ξλ)X − (Xλ)ξ} .(3.13)

Unifying equation (3.12) and (3.13), we reach at

((ξλ)− λf)QY +
{
2nf̃(Y λ)− λ(Y f̃)− 2nf̃(Y λ)

}
ξ(3.14)

−
{
λ(ξf̃) + 2nλff̃ − (2n+ 2)f̃(ξλ)

}
Y = 0.

Further, the hypothesis (ξf̃) = 0 implies that f̃ is constant and the above equation
reduces to

((ξλ)− λf)QY −
{
2nλff̃ − (2n+ 2)f̃(ξλ)

}
Y = 0.(3.15)

Letting Y = ξ in (3.15) and f be not identically zero, then we see that (ξλ) = 0.
From this, we have (Xλ) = 0, for all vector fields X on M , which implies λ is a
non-zero constant. Substituting this in equation (3.15), we arrive at QY = −2nf̃Y .
This shows that M is Einstein manifold.

Next we assume that Rg ̸= −2n(2n + 1)f̃ . Then from (3.10) it follows that
ϕDλ = 0. Applying ϕ and by virtue of ϕ2 = −I + η ⊗ ξ, the last equation gives
Dλ = (ξλ)ξ.

Now taking covariant derivative of this along arbitrary vector field X on M
yields

∇XDλ = X(ξλ)ξ − (ξλ)fϕ2X.(3.16)

On contracting equation (1.1), we obtain

∇XDλ = λ(QX) +△gλX.(3.17)

From (3.16) and (3.17), we get

λ(QX) +△gλ = X(ξλ)ξ − (ξλ)fϕ2X.

Taking X = ξ in the preceding equation, using (3.2), we get

ξ(ξλ) = −2nf̃λ+△gλ.(3.18)
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Contracting (3.16) along X implies

△gλ = ξ(ξλ) + 2n(ξλ)f.(3.19)

Making use of (3.19) in (3.18), we obtain

(ξλ)f − f̃λ = 0.(3.20)

Differentiating (3.20) in the direction of ξ and using the hypothesis ξf̃ = 0. We get

ξ(ξλ)f = (ξλ)f2,(3.21)

since f̃ = (ξf) + f2.
Suppose that f ̸≡ 0 on some neighborhood θ around p ∈ M .
Then (3.21) implies that ξ(ξλ)f = (ξλ)f on θ. Inserting this into (3.19), we get
△gλ = (2n+ 1)(ξλ)f . Making use of this in (3.20), we obtain

△gλ = (2n+ 1)f̃λ.(3.22)

Furthermore tracing the Fischer-Marsden equation in (1.1), we obtain

2n△g λ = −λRg.(3.23)

Comparing (3.22) and (3.23), we obtain Rg = −2n(2n+1)f̃ , which is contradictory
to our assumption. Hence f = 0, and M is cosymplectic. 2

Corollary 3.7.([9],Theorem 4) Let (M,ϕ, ξ, η, g) be a compact f-cosymplectic mani-
fold satisfying the Fischer-Marsden equation Rg

′∗(λ) = 0 having non-trivial solution
with (ξf̃) = 0 and M̃ be an integral manifold of D. Then M̃ is either totally um-
bilical or totally geodesic.

In Theorem 3.6., if f is a constant say α then f-cosymplectic manifold reduces to
particular case i.e., α-cosymplectic manifold. From the Theorem 3.6., we arrive at
the following:
Corollary 3.8. Let M be a compact (2n + 1)-dimensional α-cosymplectic mani-
fold, where α is a real number. Suppose that M satisfies a Fischer-Marsden equation
Rg

′∗(λ) = 0 having non-trivial solution. Then M is either of constant scalar cur-
vature −2n(2n+ 1)α2 or locally the product of Kahler manifold and an interval or
unit circle S1.

Remark 3.9. If f = 1 and n = 3 in Theorem 3.6., then the manifold reduces to
three-dimensional Kenmotsu manifold, and the result of the Theorem 3.6. coincides
with the result of [6]. That is, suppose (g, λ) is a non-trivial solution of the Fischer
Marsden equation Rg

′∗(λ) = 0 of M , then M is locally isometric to the hyperbolic
space of the form H3(−1).

We now prove the following theorem:
Theorem 3.10. If (M,ϕ, ξ, η, g) is a compact orientable f-cosymplectic manifold
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satisfying Fischer-Marsden equation (1.1) with λ = f̃ , then M is an Einstein man-

ifold. Further the solution λ is either equal to
−Rg

2n(2n+2) or zero.

Proof. Taking λ = f̃ in (3.7), we have
{
(2n+ 2)λ+

Rg

2n

}
ϕDλ = 0.

Suppose that (2n+ 2)λ+
Rg

2n = 0. Then it follows that λ is a constant, because of
constancy of Rg in Fischer-Marsden conjecture [4]. Thus M is Einstein.

On the other hand, if we assume (2n+2)λ+
Rg

2n ̸= 0 in a neighborhood θ around
p ∈ M , then we have ϕDλ = 0. Now by the action of ϕ in the preceding equation,
we get Dλ = (ξλ)ξ. It follows immediately from (3.20) that

(ξλ)f − λ2 = 0.(3.24)

Taking covariant differentiation of (3.24) along ξ, we obtain

2λ(ξλ) = (ξλ)(ξf) + ξ(ξλf).(3.25)

By our hypothesis λ = f̃ , a direct calculation gives{
λ+ f2

}
(ξλ) = ξ(ξλ)f.(3.26)

Suppose that f = 0. It follows immediately from (3.26) that λ = 0.
Next we assume that f ̸= 0, substituting (3.26) in (3.19) we get

△gλ =
λ

f
(ξλ) + (2n+ 1)λ2.(3.27)

Tracing the relation (1.1), with the help of (3.27), we obtain

−2n

f
(ξλ)− 2n(2n+ 1)λ = Rg.(3.28)

Note that if a compact Riemannian manifold (M, g) satisfies a Fischer Marsden
equation then the scalar curvature Rg is constant. Taking the covariant derivative
of (3.28) and using (3.25), we obtain that (2n+3)(ξλ) = 0, which implies (ξλ) = 0.

Finally from (3.24), we have λ = 0. 2

Lemma 3.11. Let (2n + 1)-dimensional f-cosymplectic manifold M admit a Reeb
flow invariant Ricci operator Q. Then

(ξRg) = −2
{
fRg + 2n(ξf̃) + 2n(2n+ 1)ff̃

}
(3.29)

holds.

Proof. Suppose that the Ricci operator Q of an f-cosymplectic manifold is a Reeb
flow invariant. Then we have

(LξQ)X = 0,(3.30)
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for all vector fields X on M .
Using the definition of Lie derivative in (3.30), we obtain

(∇ξQ)X −∇QXξ +Q (∇Xξ) = 0.(3.31)

Using (3.1), (3.2) in (3.31) and by straight forward calculation, we get

(∇ξQ)X = 0,(3.32)

for all vector fields X on M .
This shows that the Ricci operator Q is locally symmetric along Reeb vector field
ξ.
From (3.2) one can easily see that,

(∇ξQ)X − (∇XQ) ξ = fQX + 2n(Xf̃)ξ + 2nff̃X,

for all vector fields X on M . On contracting the above equation, we get (3.29). 2

Theorem 3.12. Let M be a compact (2n+1)-dimensional f -cosymplectic manifold
with the Reeb flow invariant Ricci operator. If (g, λ) is a non-trivial solution of the
Fischer Marsden equation Rg

′∗ = 0, then the following hold
i. M is a manifold of constant scalar curvature
ii. M reduces to α-cosymplectic manifold
iii. either (ξλ) = λf or M is Einstein manifold.

Proof. Taking inner product of equation (3.4) with ξ and making use of (3.1) and
(3.2), we have

g(R(ξ, Y )Dλ,X) = (ξλ− λf)Ric(X,Y )(3.33)

−
{
λ(ξf̃) + 2nλff̃ − (ξv)

}
g(X,Y )

+
{
2nf̃(Y λ) + λ(Y f̃)− Y v

}
η(X).

Taking scalar product of (3.3) with Dλ and comparing with (3.33), we obtain

f̃ {(ξλ)g(X,Y )− η(X)(Y λ)} = (ξλ− λf)Ric(X,Y )(3.34)

−
{
λ(ξf̃) + 2nff̃λ− (ξv)

}
g(X,Y )

+
{
2nf̃(Y λ) + λ(Y f̃)− (Y v)

}
η(X).

Let {ei} for 1 ≤ i ≤ 2n + 1 be an orthonormal basis at each point of the tangent
space of the manifold M . Taking X = Y = ei in the above equation and then
summing over i, we get

−2n(ξv) =
{
Rg(ξλ)− λfRg − 2nλ(ξf̃)− 2n(2n+ 1)ff̃λ

}
.(3.35)
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Taking covariant derivative of v = −Rgλ
2n along ξ, we obtain

(ξv) = − 1

2n
{Rg(ξλ) + λ(ξRg)} .(3.36)

Unifying equation (3.35) and (3.36), and noting that (g, λ) is a non-zero solution of
Fischer-Marsden equation, we obtain

(ξRg) = −
{
fRg + 2n(ξf̃) + 2n(2n+ 1)ff̃

}
.(3.37)

From (3.29) and (3.37), we find that

fRg = −
{
2n(ξf̃) + 2n(2n+ 1)ff̃

}
.(3.38)

From (3.37) and (3.38), we have (ξRg) = 0, implies that (XRg) = 0 for all vector
fields X on M . This shows that, whenever f ̸= 0 then M is manifold of constant
scalar curvature.
Using the above equation in (3.35), we get

−2n(ξv) = Rg(ξλ).(3.39)

In (3.33), replacing X by ξ and making use of (3.2), we conclude that (ξf̃) = 0. By
the Proposition 3.1., f is a constant.
According to the Proposition 3.2., M is α-cosymplectic manifold.
Thus the relation (3.38), show that Rg = −2n(2n+ 1)f̃ . Inserting this into (3.39),
we find

ξv = (2n+ 1)f̃(ξλ), Xv = (2n+ 1)f̃(Xλ),(3.40)

for all vector fields X on M . Substituting (3.40) in (3.34), one can easily obtain

(ξλ− λf)
{
Ric(X,Y ) + 2nf̃g(X,Y )

}
= 0,

which implies that,

(ξλ− λf) = 0 or Ric(X,Y ) + 2nf̃g(X,Y ) = 0.(3.41)

The proof completes. 2

Remark 3.13. For f = 1 in Theorem 3.12., M is a (2n+1)-dimensional Kenmotsu
manifold. In this case suppose that Ricci operatior Q is Reeb flow invariant and
(g, λ) is a non-trivial solution of the Fischer Mersden equation R

′∗
g = 0, then either

ξλ = λ or M is an Einstien manifold.
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4. Almost Cosymplectic (k, µ) Metrics Satisfying Fischer Marsden Equa-
tion

A (2n + 1)-dimensional almost cosymplectic manifold (M,ϕ, ξ, η, g) is said to
be almost cosymplectic (k, µ)-manifold, if the charactrestic vector field belongs to
the (k, µ)-nullity distribution. That is

Np(k, µ) = {Z ∈ TpM/R(X,Y )Z = k(g(Y,Z)X − g(X,Z)Y ) + µ(g(Y, Z)hX − g(X,Z)hY },

for certain constants k and µ, where X and Y are arbitrary vector fields on M . By
the definiton of (k, µ)-almost cosymplectic manifold, we have

R(X,Y )ξ = k{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }.(3.1)

In addition by [7], if M is a (2n + 1)-dimesional almost cosymplectic manifold
satisfying (k, µ)-nullity condition, we have

∇Xξ = −ϕhX,(3.2)

Q = 2nkη ⊗ ξ + µh,(3.3)

h2 = kϕ2,(3.4)

Qξ = 2nkξ,(3.5)

Rg = 2nk.(3.6)

Lemma 4.1. Let M be an almost (k, µ)-cosymplectic manifold of dimension 2n+
1(n ≥ 1), with k < 0. Then we have

(∇XQ)ξ = 2nk(h
′
X)−Qh

′
X,(3.7)

for all vector fields X on M .

Proof. Taking covariant derivative of (3.4), along the arbitrary vector field X on M
and with the help of (3.2), we get the desired equation (3.7). 2

Lemma 4.2. Let g be a metric of an almost (k, µ)-cosymplectic manifold, (k < 0)
satisfying the Fischer-Marsden equation (1.1) with non-zero solution λ. Then the
Riemannian curvature tensor can be expressed as

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + λ{(∇XQ)Y − (∇Y Q)X}(3.8)

+k{(Y λ)X − (Xλ)Y }.

Theorem 4.3. If the metric g of an almost (k, µ)-cosymplectic manifold with k < 0
satisfies the Fischer-Marsden equation, then either 4n2k+µ2 = 0 or it has a trivial
solution only.
Proof.By definition, if the metric g of an almost (k, µ)-cosymplectic manifold satis-
fies the Fischer-Marsden equation (1.1) with k < 0, then we get

∇XDλ = λ{QX − kX},(3.9)

with△g λ = υ = −kλ,(3.10)
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where we have used (3.6).
Now by Lemma 4.2., taking inner product of (3.8) with ξ and using (3.7), we have

g(R(X,Y )Dλ, ξ) = 2nk{(Xλ)η(Y )− (Y λ)η(X) + λg(X,h
′
Y )(3.11)

−λg(h
′
X,Y )}+ λ{g(h

′
X,QY )− g(h

′
Y,QX)}

−k{(Xλ)η(Y )− Y (λ)η(X)},

for all vector fields X and Y on M . Plugging Y = ξ, in the previous equation, we
obtain

g(R(X, ξ)Dλ, ξ) = (2n− 1)k{(Xλ)− (ξλ)η(X)},(3.12)

for all vector fields X on M . Since ξ ∈ (k, µ)-nullity distribution, from (3.2), we see
that

g(R(X, ξ)ξ,Dλ) = k{(Xλ)− (ξλ)η(X)}+ µg(hX,Dλ)},(3.13)

for any vector field X on M . Moreover, we have

g(R(X, ξ)Dλ, ξ) + g(R(X, ξ)ξ,Dλ) = 0.(3.14)

Inserting (3.12) and (3.13) in (3.14) and by straightforward calculation, we obtain

µ(hDλ) = 2nk{(ξλ)ξ −Dλ}.(3.15)

Application of h on both sides of the above relation yields,

−2n(hDλ) = µ{(ξλ)ξ −Dλ}.(3.16)

By comparing (3.15) and (3.16), we get

(4n2k + µ2){(ξλ)ξ −Dλ} = 0,(3.17)

which implies that either (4n2k + µ2) = 0 or {(ξλ)ξ −Dλ} = 0.
Suppose that (4n2k + µ2) ̸= 0. Then

Dλ = (ξλ)ξ.(3.18)

Differentiating this along arbitrary vector field X, we get

∇XDλ = X(ξλ)ξ + (ξλ)h
′
X.(3.19)

Comparing (3.9) and (3.19), we get

λ(QX)− (kλ)X = X(ξλ)ξ + (ξλ)h
′
X.(3.20)

Now, by using (3.3) in (3.20), we obtain

2nkλη(X)ξ −X(ξλ)ξ − kλX + µλ(hX)− (ξλ)h
′
X = 0,(3.21)

for any vector field X on M .
Finally, contracting (3.21) over X and using tr(h) = tr(ϕh) = 0, we get λ = 0,

which proves the theorem. 2
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