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AN APPROACH FOR HYPERSURFACE FAMILY WITH

COMMON GEODESIC CURVE IN THE 4D GALILEAN SPACE G4

Dae Won Yoon a and Zühal Küçükarslan Yüzbaşı b, ∗

Abstract. In the present study, we derive the problem of constructing a hypersur-
face family from a given isogeodesic curve in the 4D Galilean space G4. We obtain
the hypersurface as a linear combination of the Frenet frame in G4 and examine the
necessary and sufficient conditions for the curve as a geodesic curve. Finally, some
examples related to our method are given for the sake of clarity.

1. Introduction

Curves on a surface which locally yield the minimal distance between any two

points are of great interest. These curves are said to be geodesics which play an im-

portant role in differential geometry and theoretical physics, particularly in General

Relativity, where gravity can be declared not a force but a significance of a curved

spacetime geometry in which the source of curvature is the stress-energy tensor.

Therefore, for instance, the path of a planet orbiting around a star is the projection

of a geodesic of the curved 4D spacetime geometry around the star onto 3D space.

Geodesics also are curves along which geodesic curvature vanishes. Geodesics have

been studied the subject of many studies in a diversity of applications, such as the

designing industry of shoes, tent manufacturing, cutting and painting path [4, 5, 8].

Generally, the aim of mostly studies about geodesics is to set up a family of

surfaces passing a given geodesic curve and show it as a linear combination of the

marching-scale functions and the Frenet vectors. Based on that, there have been

various researches on this subject in 3-dimensional Euclidean and non-Euclidean

space [1, 9, 10, 12, 14, 16].
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Besides, for the differential geometry of surface and hypersurface, there exists a

rising interest in 4-dimensional space [2, 11]. Also, in [3], Bayram and Kasap gave

the hypersurfaces family from a given common geodesic curve.

In this paper, we investigate the parametric representation of hypersurface family

passing a given isogeodesic curve, i.e., both a geodesic and a parameter curve in

4-dimensional Galilean space G4. The remainder of our paper is given as four

sections. Firstly, we mainly give the background. Secondly, we give the parametric

representations of a hypersurface family passing a given geodesic curve and provide

the necessary and sufficient condition for that curve as a geodesic curve on the

given hypersurface. Subsequently, we introduce three types of the marching-scale

functions. Finally, we give some examples and figures are plotted for the sake of

clarity of our method.

2. Preliminaries

The Galilean space G3 is a 3-dimensional complex projective space P3. The

absolute figure of the Galilean space comprise of {w, f, I} in which w is the ideal

(absolute) plane, f is the line (absolute line) in w and I is the fixed elliptic involution

of points of f .

The analyze of mechanics of plane-parallel motions reduces to the examine of a

geometry of the 3-dimensional space with {x, y, t}, is investigated by the motion

formula in [15]. It is defined that the 4D Galilean geometry, which examines all

properties invariant under motions of objects in the space, is even complex. In an

other words, it could be considered as the properties of 4-dimensional space with

coordinates that are invariant under the general Galilean transformations in [15].

Let z = (z1, z2, z3, z4) and t = (t1, t2, t3, t4) be two vectors in G4. The Galilean

scalar product in G4 is given by

(1) ⟨z, t⟩ =
{

z1t1, if z1 ̸= 0 or t1 ̸= 0
z2t2 + z3t3 + z4t4, if z1 = 0 and t1 = 0

.

Let z = (z1, z2, z3, z4), t = (t1, t2, t3, t4) and u = (u1, u2, u3, u4) be vectors in G4.

Then the cross product in G4 is given as follows:

(2) z ∧ t ∧ u =

∣∣∣∣∣∣∣∣
0 e2 e3 e4
z1 z2 z3 z4
t1 t2 t3 t4
u1 u2 u3 u4

∣∣∣∣∣∣∣∣ ,
where ei, 2 ≤ i ≤ 4, are the standard basis vectors.
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A curve r : I → G4 is an arbitrary curve in G4 is given by

r (t) = (f(t), g (t) , h (t) , l(t)) ,

where f(t), g (t) , h (t) and l(t) are smooth functions on I ⊂ R. Let r be a curve in

G4, parametrized by the Galilean invariant arc length s, is given by

r (s) = (s, g (s) , h (s) , l(s)) .

For the curve r, the Frenet vectors are given in the following forms

t (s) = r′ (s) =
(
1, g′ (s) , h′ (s) , l′(s)

)
,

n (s) =
r′′ (s)

κ (s)
=

1

κ (s)

(
0, g

′′
(s) , h′′ (s) , l

′′
(s)
)
,

b (s) =
1

τ (s)

(
0, (

1

κ (s)
g
′′
(s))′, (

1

κ (s)
h′′ (s))′, (

1

κ (s)
l
′′
(s))′

)
,

e(s) = µt (s) ∧ n (s) ∧ b (s) ,

where µ equals ±1 such that the determinant |t, n, b, e| = 1 and κ (s) , τ (s) and σ(s)

are the first, second and third curvature of r(s) which is given by, respectively,

κ (s) =

√
g′′ (s)2 + h′′ (s)2 + l′′ (s)2,(3)

τ (s) =
√
⟨n′ (s) , n′ (s)⟩,

σ (s) =
√
⟨b′ (s) , e (s)⟩.

The vectors t(s), n(s), b(s) and e(s) are called the tangent, principal normal, first

binormal, and second binormal vector of r, respectively.

On the other hand, Frenet formulas can be given as [13]

t′(s) = κ(s)n(s),(4)

n′(s) = τ(s)b(s),

b′(s) = −τ(s)n(s) + σ(s)e(s),

e′(s) = −σ(s)b(s).

Let R (s,κ, ρ) be a hypersurface in G4. The isotropic normal vector field η of R

is defined as follows [6]

η (s,κ, ρ) = Rs ∧Rκ ∧Rρ,

where Rs =
∂R(s,κ,ρ)

∂s , Rκ = ∂R(s,κ,ρ)
∂κ and Rρ = ∂R(s,κ,ρ)

∂ρ .
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3. Hypersurface Family with Common Geodesic Curve

A curve r(s) on a hypersurface R (s,κ, ρ) in G4 is said to be an isoparametric

curve if it is a parameter curve, that is, there exists a pair of parameters κ0 and

ρ0 such that r(s) = R(s,κ0, ρ0). Also the curve r(s) on the hypersurface R (s,κ, ρ)
is geodesic iff the principal normal vector n(s) of r(s) is everywhere parallel to the

isotropic normal vector η (s,κ, ρ) of the hypersurface R (s,κ, ρ). Then, a given curve

r(s) is called an isogeodesic of the hypersurface R if it is both a geodesic and an

isoparametric curve on R.

Let R = R (s,κ, ρ) be a parametric hypersurface through the arc-length

parametrized curve r(s) in G4. The hypersurface is defined by

R (s,κ, ρ) = r(s) + [α (s,κ, ρ) t (s) + β (s,κ, ρ)n (s)(5)

+γ (s,κ, ρ) b (s) + δ (s,κ, ρ) e (s)],

L1 ≤ s ≤ L2, T1 ≤ κ ≤ T2 and Q1 ≤ ρ ≤ Q2,

where α (s,κ, ρ), β (s,κ, ρ), γ (s,κ, ρ) and δ (s,κ, ρ) are smooth functions. These

functions are said to be the marching-scale functions.

Our aim is to provide necessary and sufficient conditions for the given curve r(s)

to be an isogeodesic curve on a hypersurface R = R (s,κ, ρ).
Firstly, let r(s) be a curve on the hypersurface R in G4. If r(s) is an isoparametric

curve on this surface, then a parameter κ0 ∈ [T1, T2] and ρ0 ∈ [Q1, Q2] should be

existed such that r(s) = R (s,κ0, ρ0), L1 ≤ s ≤ L2, that is,

α (s,κ0, ρ0) = β (s,κ0, ρ0) = γ (s,κ0, ρ0) = δ (s,κ0, ρ0) = 0,(6)

L1 ≤ s ≤ L2, κ0 ∈ [T1, T2] and ρ0 ∈ [Q1, Q2].

Secondly, r(s) on the hypersurface R (s,κ, ρ) is a geodesic if and only if

n(s) ∥η (s,κ0, ρ0) .

Now, the normal vector η (s,κ0, ρ0) can be found by calculating the cross product

of the partial derivatives and using (4) as follows:

∂R (s,κ, ρ)
∂s

= (1 +
∂α (s,κ, ρ)

∂s
)t (s) + (α (s,κ, ρ)κ (s) +

∂β (s,κ, ρ)
∂s

(7)

−γ (s,κ, ρ) τ(s))n (s) + (β (s,κ, ρ) τ(s) +
∂γ (s,κ, ρ)

∂s

−δ (s,κ, ρ)σ(s))b (s) + (γ (s,κ, ρ)σ(s) +
∂δ (s,κ, ρ)

∂s
)e (s) ,
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(8)
∂R (s,κ, ρ)

∂κ
=
∂α (s,κ, ρ)

∂κ
t (s)+

∂β (s,κ, ρ)
∂κ

n (s)+
∂γ (s,κ, ρ)

∂κ
b (s)+

∂δ (s,κ, ρ)
∂κ

e (s)

and

(9)
∂R (s,κ, ρ)

∂ρ
=
∂α (s,κ, ρ)

∂ρ
t (s)+

∂β (s,κ, ρ)
∂ρ

n (s)+
∂γ (s,κ, ρ)

∂ρ
b (s)+

∂δ (s,κ, ρ)
∂ρ

e (s) .

Remark 3.1. Since

α (s,κ0, ρ0) = β (s,κ0, ρ0) = γ (s,κ0, ρ0) = δ (s,κ0, ρ0) = 0,

L1 ≤ s ≤ L2, κ0 ∈ [T1, T2] and ρ0 ∈ [Q1, Q2],

through the arc-length parametrized curve r(s), by the definition of partial differ-

entiation, we have

∂α (s,κ0, ρ0)

∂s
=

∂β (s,κ0, ρ0)

∂s
=

∂γ (s,κ0, ρ0)

∂s
=

∂δ (s,κ0, ρ0)

∂s
= 0,(10)

L1 ≤ s ≤ L2, κ0 ∈ [T1, T2] and ρ0 ∈ [Q1, Q2].

Then, from (5), we obtain

η (s,κ0, ρ0) =
∂R (s,κ0, ρ0)

∂s
∧ ∂R (s,κ0, ρ0)

∂κ
∧ ∂R (s,κ0, ρ0)

∂ρ
(11)

= φ1 (s,κ0, ρ0) t (s)− φ2 (s,κ0, ρ0)n (s)

+φ3 (s,κ0, ρ0) b (s)− φ4 (s,κ0, ρ0) e (s) .

We need to calculate the functions φi (s,κ0, ρ0), 1 ≤ i ≤ 4.

Using (5) and taking account of Remark 3.1, we have

φ1 (s,κ0, ρ0) = 0,(12)

φ2 (s,κ0, ρ0) =
∂γ (s,κ, ρ)

∂κ
∂δ (s,κ, ρ)

∂ρ
− ∂γ (s,κ, ρ)

∂ρ

∂δ (s,κ, ρ)
∂κ

,

φ3 (s,κ0, ρ0) =
∂β (s,κ, ρ)

∂κ
∂δ (s,κ, ρ)

∂ρ
− ∂β (s,κ, ρ)

∂ρ

∂δ (s,κ, ρ)
∂κ

,

φ4 (s,κ0, ρ0) =
∂β (s,κ, ρ)

∂κ
∂γ (s,κ, ρ)

∂ρ
− ∂β (s,κ, ρ)

∂ρ

∂γ (s,κ, ρ)
∂κ

.

So, n(s) ∥η (s,κ0, ρ0) if and only if

φ2 (s,κ0, ρ0) ̸= 0, φ3 (s,κ0, ρ0) = 0 and φ4 (s,κ0, ρ0) = 0.

Hence, the necessary and sufficient conditions for the hypersurface R (s,κ, ρ) to
have the curve r(s) in G4 as an isogeodesic curve can be given with the following

theorem.
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Theorem 3.2. Let R (s,κ, ρ) be a hypersurface having a curve r(s) in G4. Then

r(s) is an isogeodesic curve on the hypersurface R if and only if

α (s,κ0, ρ0) = β (s,κ0, ρ0) = γ (s,κ0, ρ0) = δ (s,κ0, ρ0) = 0,

φ2 (s,κ0, ρ0) ̸= 0, φ3 (s,κ0, ρ0) = 0 and φ4 (s,κ0, ρ0) = 0

satisfied, where L1 ≤ s ≤ L2, κ0 ∈ [T1, T2] and ρ0 ∈ [Q1, Q2].

We call the set of hypersurfaces satisfying Theorem 3.2 an isogeodesic hypersur-

face family.

Marching-scale Functions

For L1 ≤ s ≤ L2, T1 ≤ κ ≤ T2 and Q1 ≤ ρ ≤ Q2, we will define three different

above mentioned types of the marching-scale functions.

Type A. Let marching-scale functions be

α (s,κ, ρ) = λ (s)X (κ, ρ) ,(13)

β (s,κ, ρ) = µ (s)Y (κ, ρ) ,

γ (s,κ, ρ) = ν (s)Z (κ, ρ) ,

δ (s,κ, ρ) = ξ (s)W (κ, ρ) ,

where

λ (s) , µ (s) , ν (s) , ξ (s) , X (κ, ρ) , Y (κ, ρ) , Z (κ, ρ) ,W (κ, ρ) ∈ C1

and λ (s) , µ (s) , ν (s) and ξ (s) are not identically zero.

Hence, r(s) is an isogeodesic curve on R (s,κ, ρ) if and only if

X (κ0, ρ0) = Y (κ0, ρ0) = Z (κ0, ρ0) = W (κ0, ρ0) ,(14)

ν (s) ̸= 0 and ξ (s) ̸= 0

and
∂Z (s,κ0, ρ0)

∂κ
∂W (s,κ0, ρ0)

∂ρ
− ∂Z (s,κ0, ρ0)

∂ρ

∂W (s,κ0, ρ0)

∂κ
̸= 0,

µ (s) = 0 or
∂Y (s,κ0, ρ0)

∂κ
∂W (s,κ0, ρ0)

∂ρ
− ∂Y (s,κ0, ρ0)

∂ρ

∂W (s,κ0, ρ0)

∂κ
= 0,

µ (s) = 0 or
∂Y (s,κ0, ρ0)

∂κ
∂Z (s,κ0, ρ0)

∂ρ
− ∂Y (s,κ0, ρ0)

∂ρ

∂Z (s,κ0, ρ0)

∂κ
= 0

satisfied.
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To simplify (14), we can write ν (s) ̸= 0 and ξ (s) ̸= 0,

(15)

X (κ0, ρ0) = Y (κ0, ρ0) = Z (κ0, ρ0) = W (κ0, ρ0) ,

∂Z (s,κ0, ρ0)

∂κ
∂W (s,κ0, ρ0)

∂ρ
− ∂Z (s,κ0, ρ0)

∂ρ

∂W (s,κ0, ρ0)

∂κ
̸= 0,

µ (s) = 0 or
∂Y (s,κ0, ρ0)

∂κ
=

∂Y (s,κ0, ρ0)

∂ρ
= 0,

κ0 ∈ [T1, T2], ρ0 ∈ [Q1, Q2].

Type B. Let marching-scale functions be

α (s,κ, ρ) = λ (s,κ)X (ρ) ,(16)

β (s,κ, ρ) = µ (s,κ)Y (ρ) ,

γ (s,κ, ρ) = ν (s,κ)Z (ρ) ,

δ (s,κ, ρ) = ξ (s,κ)W (ρ) ,

where λ (s,κ) , µ (s,κ) , ν (s,κ) , ξ (s,κ) , X (ρ) , Y (ρ) , Z (ρ) ,W (ρ) ∈ C1. Thus, r(s)

is an isogeodesic curve on R (s,κ, ρ) if and only if

(17)

λ (s,κ0)X (ρ0) = µ (s,κ0)Y (ρ0) = ν (s,κ0)Z (ρ0) = ξ (s,κ0)W (ρ0) = 0,

∂ν (s,κ0)

∂κ
ξ (s,κ0)Z (ρ0)

dW (ρ0)

dρ
− ν (s,κ0)

∂ξ (s,κ0)

∂κ
W (ρ0)

dZ (ρ0)

dρ
̸= 0,

Y (ρ0) = µ (s,κ0) = 0 or dY (ρ0)
dρ = Y (ρ0) = 0 or dY (ρ0)

dρ = ∂µ(s,κ0)
∂κ = 0,

κ0 ∈ [T1, T2], ρ0 ∈ [Q1, Q2]

satisfied.

Type C. Let marching-scale functions be

α (s,κ, ρ) = λ (s, ρ)X (κ) ,(18)

β (s,κ, ρ) = µ (s, ρ)Y (κ) ,

γ (s,κ, ρ) = ν (s, ρ)Z (κ) ,

δ (s,κ, ρ) = ξ (s, ρ)W (κ) ,

where λ (s, ρ) , µ (s, ρ) , ν (s, ρ) , ξ (s, ρ) , X (κ) , Y (κ) , Z (κ) ,W (κ) ∈ C1. There-

fore, r(s) is an isogeodesic curve on R (s,κ, ρ) if and only if

λ (s, ρ0)X (κ0) = µ (s, ρ0)Y (κ0) = ν (s, ρ0)Z (κ0) = ξ (s, ρ0)W (κ0) = 0,

ν (s, ρ0)
∂ξ (s, ρ0)

∂ρ

dZ (κ0)

dκ
W (κ0)−

∂ν (s, ρ0)

∂ρ
ξ (s, ρ0)Z (κ0)

dW (κ0)

dκ
̸= 0,

(19)
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Y (κ0) = µ (s, ρ0) = 0 or
dY (κ0)

dκ
= Y (κ0) = 0 or

dY (κ0)

dκ
=

∂µ (s, ρ0)

∂ρ
= 0,

κ0 ∈ [T1, T2], ρ0 ∈ [Q1, Q2]

satisfied.

Example 3.3. Let r(s) be a curve given by parametrization

r (s) =
(
s, cos s,

√
2 sin s, cos s

)
.

It is easy to calculate that

t =
(
1,− sin s,

√
2 cos s,− sin s

)
,

n =
1√
2

(
0,− cos s,−

√
2 sin s,− cos s

)
,

b =
1√
2

(
0, sin s,−

√
2 cos s, sin s

)
,

e =
1√
2
(0,−1, 0, 1) .

Now, we obtain the hypersurface family with the isogeodesic curve r(s) for three

different types of the marching-scale functions.

Marching-scale functions of Type A : Let us choose

λ (s) = µ (s) = ν (s) = ξ (s) = 1,

X (κ, ρ) = ρ(κ − κ0)(ρ− ρ0),

Y (κ, ρ) = 0,

Z (κ, ρ) = ρ(κ − κ0),

W (κ, ρ) = (ρ− ρ0),

where κ0 ∈ [0, 1], 0 ≤ s ≤ 2π and from (14) we take ρ0 ̸= 0. So, we get

α (s,κ, ρ) = ρ(κ − κ0)(ρ− ρ0),

β (s,κ, ρ) = 0,

γ (s,κ, ρ) = ρ(κ − κ0),

δ (s,κ, ρ) = (ρ− ρ0)

and using (6) and Frenet vectors, then we get the hypersurface which is a member

of hypersurface family as follows
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R (s,κ, ρ)=


s+ ρ(κ − κ0)(ρ− ρ0),

cos s− ρ(κ − κ0)(ρ− ρ0) sin s+
1√
2
ρ(κ − κ0) sin s− 1√

2
(ρ− ρ0),√

2 sin s+
√
2ρ(κ − κ0)(ρ− ρ0) cos s− ρ(κ − κ0) cos s,

cos s− ρ(κ − κ0)(ρ− ρ0) sin s+
1√
2
ρ(κ − κ0) sin s+

1√
2
(ρ− ρ0)

 ,

where 0 ≤ s ≤ 2π, 0 ≤ κ0 ≤ 1. The position of the curve r(s) can be set on the

hypersurface by changing the parameters κ0 and ρ0 . Let us take κ0 = 0 and ρ0 =
1

2
.

Now r(s) is again an isogeodesic on the hypersurface R (s,κ, ρ) and the equation of

the hypersurface becomes

R (s,κ, ρ) =



s+ ρκ(ρ− 1

2
),

cos s− ρκ(ρ− 1

2
) sin s+ 1√

2
ρκ sin s− 1√

2
(ρ− 1

2
),

√
2 sin s+

√
2ρκ(ρ− 1

2
) cos s− ρκ cos s,

cos s− ρκ(ρ− 1

2
) sin s+ 1√

2
ρκ sin s+ 1√

2
(ρ− 1

2
)


.

The principle step for visualization 4D is projecting (parallel or perspective) the

geometric objects in 4-space into the 3-space. Thus, we yield a three-dimensional

volume. Furthermore, in practice the problem of visualizing and approximating

three-dimensional data, commonly referred to as scalar fields. The graph of a func-

tion f(x,y, z) : U ⊂ R3 → R, U is open, is a special type of parametric hypersur-

face the parametrization (x,y, z,w = f(x,y, z)) in 4-space. For further information

about visualization of four-dimensional space, we refer to [17, 6, 7]. So, if we (par-

allel) project the hypersurface R (s,κ, ρ) into the z =0 subspace and setting κ =
1

2
,

the surface is given by

Rz (s, ρ) =


s+

1

2
ρ(ρ− 1

2
),

cos s− 1

2
ρ(ρ− 1

2
) sin s+ 1

2
√
2
ρ sin s− 1√

2
(ρ− 1

2
),

cos s− 1

2
ρ(ρ− 1

2
) sin s+ 1

2
√
2
ρ sin s+ 1√

2
(ρ− 1

2
)

 ,

where 0 ≤ s ≤ 2π and 0 ≤ ρ ≤ 1, in 3-space drawn in Figure 1-Type A.

Marching-scale functions of Type B : Let us take

ν (s,κ) = (s+ κ), ξ (s,κ) = s(κ − κ0),

X(ρ) = Y (ρ) = 0,

Z(ρ) = (ρ− ρ0),W (ρ) ≡ 1,

where κ0 ∈ [0, 1], ρ0 ∈ [0, 1] and π ≤ s ≤ 3π. Then, we obtain
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α (s,κ, ρ) = 0,

β (s,κ, ρ) = 0,

γ (s,κ, ρ) = (s+ κ)(ρ− ρ0),

δ (s,κ, ρ) = s(κ − κ0),

and using (6) and Frenet vectors, the hypersurface satisfies

R (s,κ, ρ) =

 s, cos s+ 1√
2
(s+ κ)(ρ− ρ0) sin s− 1√

2
s(κ − κ0),√

2 sin s− (s+ κ)(ρ− ρ0) cos s,
cos s+ 1√

2
(s+ κ)(ρ− ρ0) sin s+

1√
2
s(κ − κ0)

 ,

where π ≤ s ≤ 3π, 0 ≤ κ0 ≤ 1 and 0 ≤ ρ0 ≤ 1. Then, R (s,κ, ρ) is a member of the

isogeodesic hypersurface family having the curve r(s) as an isogeodesic.

If κ0 = 1 and ρ0 = 0, then the hypersurface R is being

R (s,κ, ρ) =

 s, cos s+ 1√
2
(s+ κ)ρ sin s− 1√

2
s(κ − 1),√

2 sin s− (s+ κ)ρ cos s,
cos s+ 1√

2
(s+ κ)ρ sin s+ 1√

2
s(κ − 1)

 .

Thus, if we (parallel) project the hypersurface R (s,κ, ρ) into the w =0 subspace

and fixing ρ =
1

8
, the surface is given by

(20) Rw

(
s,κ,

1

8

)
=

 s, cos s+ 1
8
√
2
(s+ κ) sin s− 1√

2
s(κ − 1),

√
2 sin s− 1

8
(s+ κ) cos s)

 ,

where π ≤ s ≤ 3π, 0 ≤ κ ≤ 1, in 3-space illustrated in Figure 1-Type B.

Marching-scale functions of Type C: Consider

ν (s, ρ) = s(ρ− ρ0), ξ (s, ρ) = (s+ ρ+ 1),

X(κ) = Y (κ) = 0,

Z(κ) = κ2,W (κ) ≡ (κ − κ0),

where ρ0 ∈ [0, 1] and π ≤ s ≤ 3π and from (14) we take κ0 ̸= 0.

Then, we obtain

α (s,κ, ρ) = 0,

β (s,κ, ρ) = 0,

γ (s,κ, ρ) = s(ρ− ρ0)κ2,

γ (s,κ, ρ) = (s+ ρ+ 1)(κ − κ0)
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Figure 1. Projection of a member of the hypersurface family with
marching-scale functions and its isogeodesic.

and using (6) and Frenet vectors, the hypersurface can be found as follows:

R (s,κ, ρ) =

 s, cos s+ 1√
2
s(ρ− ρ0)κ2 sin s− 1√

2
(s+ ρ+ 1)(κ − κ0),√

2 sin s− s(ρ− ρ0)κ2 cos s,
cos s+ 1√

2
s(ρ− ρ0)κ2 sin s+ 1√

2
(s+ ρ+ 1)(κ − κ0)

 .

Then R (s,κ, ρ) is a member of the isogeodesic hypersurface family.

Setting κ0 = 1 and ρ0 = 0. Then, the hypersurface R becomes

R (s,κ, ρ) =

 s, cos s+ 1√
2
sρκ2 sin s− 1√

2
(s+ ρ+ 1)(κ − 1),√

2 sin s− sρκ2 cos s,
cos s+ 1√

2
sρκ2 sin s+ 1√

2
(s+ ρ+ 1)(κ − 1)

 .

Hence, if we (parallel) project the hypersurface R (s,κ, ρ) into the w =0 subspace

and fixing ρ =
1

4
, the surface is given by

(21) Rw

(
s,κ,

1

4

)
=

(
s, cos s+ 1

4
√
2
sκ2 sin s− 1√

2
(s+ 5

4)(κ − 1),√
2 sin s− s14κ

2 cos s

)
,

where π ≤ s ≤ 3π, 0 ≤ κ ≤ 1, in 3-space plotted in Figure 1-Type C.
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