Figure 1. Projection of a member of the hypersurface family with marching-scale functions and its isogeodesic.
References
- R.A. Al-Ghefaria & A.B. Rashad A.: An approach for designing a developable surface with a common geodesic curve. Int. J. Contemp. Math. Sci. 8 (2013), no. 18, 875-891. https://doi.org/10.12988/ijcms.2013.39101
- S.A. Badr et al.: Non-transversal intersection curves of hypersurfaces in Euclidean 4-space. J. Comput. Appl. Math. 288 (2015), 81-98. https://doi.org/10.1016/j.cam.2015.03.054
- E. Bayram & E. Kasap: Hypersurface family with a common isogeodesic. Sci. Stud. Res. Ser. Math. Inform. 24 (2014), no. 2, 5-24.
- R. Brond et al.: Estimation of the transport properties of polymer composites by geodesic propagation. J. Microsc. 176 (1994), 167-177. https://doi.org/10.1111/j.1365-2818.1994.tb03511.x
- S. Bryson: Virtual spacetime: an environment for the visualization of curved spacetimes via geodesic flows. IEEE Visualization (1992), 291-298.
- M. Duldul: On the intersection curve of three parametric hypersurfaces. Comput. Aided Geom. Des. 27 (2010), no. 1, 118-127. https://doi.org/10.1016/j.cagd.2009.10.002
- B. Hamann: Visualization and modeling contours of trivariate functions. Ph.D. thesis, Arizona State University, Phoenix, Ariz, USA, 1991.
- R.J. Haw: An application of geodesic curves to sail design. Comput. Graphics Forum 4 (1985), 137-139. https://doi.org/10.1111/j.1467-8659.1985.tb00203.x
- G. Saffak & E. Kasap: Family of surface with a common null geodesic. Int. J. Phys. Sci. 4 (2009), no. 8, 428-433.
- E. Kasap & F.T. Akyildiz: Surfaces with a common geodesic in Minkowski 3-space. Appl. Math. Comp. 177 (2006), 260-270. https://doi.org/10.1016/j.amc.2005.11.005
- A. Kazan & H. Karadag: Rotation surfaces in 4-dimensional Pseudo-Euclidean spaces. Orbit 2 (2014), 2347-9051.
-
Z. Kucukarslan Yuzbasi & M. Bektas: On the construction of a surface family with common geodesic in Galilean space
$G_3$ . Open Phys. 14 (2016), 360-363. - S. Yilmaz: Construction of the Frenet-Serret frame of a curve in 4D Galilean space and some applications. Int. J. Phys. Sci. 5 (2010), no. 8, 1284-1289.
- G.J. Wang, K. Tang & C.L. Tai: Parametric representation of a surface pencil with a common spatial geodesic. Comput. Aided Des. 36 (2004), 447-459. https://doi.org/10.1016/S0010-4485(03)00117-9
- I.M. Yaglom: A Simple non-Euclidean geometry and its physical basis. Springer-Verlag, New York, 1979.
- D.W. Yoon: Some classification of translation surfaces in Galilean 3-space. Int. J. Math. Anal. 6 (2012), no. 28, 1355-1361.
- J. Zhou: Visualization of four-dimensional space and its applications. Ph.D. thesis, Purdue University, 1991.