• Title/Summary/Keyword: Sub-field mapping

Search Result 28, Processing Time 0.034 seconds

Fuzzy Sub-Field Mapping Algorithm For High Image Quality PDP (고화질 PDP를 위한 Fuzzy Sub-Field 맵핑 알고리즘)

  • 구본철;진성일;최두현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.359-362
    • /
    • 2003
  • In PDP(Plasma Display Panel), sub-field method is used to implement gray scale. Each sub-field has different periods. And Every gray level has information of which sub-field has to be displayed. This is called sub-field mapping. There are several sub-field mapping values in some gray levels. So, it is possible to select best choice in this paper, we propose new sub field mapping method using a fuzzy inference system to select best sub-field mapping values in accordance with input image and environment temperature. In order to implement fuzzy system, we used MATLAB fuzzy inference editor.

  • PDF

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.

Developing a Cantilever-type Near-field Scanning Optical Microscope Using a Single Laser for Topography Detection and Sample Excitation

  • Ng'ang'a, Douglas Kagoiya;Ali, Luqman;Lee, Yong Joong;Byeon, Clare Chisu
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • The capabilities of the near-field scanning optical microscope (NSOM) for obtaining high resolution lateral topographical images as well as for mapping the spectroscopic and optical properties of a sample below the diffraction limit of light have made it an attractive research field for most researchers dealing with optical characteristics of materials in nano scales. The apertured NSOM technique involves confining light into an aperture of sub-wavelength size and using it to illuminate a sample maintained at a distance equal to a fraction of the sub-wavelength aperture (near-field region). In this article, we present a setup for developing NSOM using a cantilever with a sub-wavelength aperture at the tip. A single laser is used for both cantilever deflection measurement and near-field sample excitation. The laser beam is focused at the apex of the cantilever where a portion of the beam is reflected and the other portion goes through the aperture and causes local near-field optical excitation of the sample, which is then raster scanned in the near-field region. The reflected beam is used for an optical beam deflection technique that yields topographical images by controlling the probe-sample in nano-distance. The fluorescence emissions signal is detected in far-field by the help of a silicon avalanche photodiode. The images obtained using this method show a good correlation between the topographical image and the mapping of the fluorescence emissions.

Implementation of Gray-to-Gray 3D Crosstalk Reduction using Look-Up Table and Sub-Field Mapping (룩업 테이블 및 서브필드 맵핑을 이용한 계조 레벨 간 3D 크로스토크 저감 기술 구현)

  • Hong, Jae-Geun;Chung, Hae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.928-936
    • /
    • 2013
  • 3D crosstalk is one of the disturbing things to recognize 3D images. This is caused by the phenomenon that input image for left eye is transferred at the right eye and right eye is transferred at the left eye because of the imperfect isolation by the device characteristics. In this paper, we review the 3D PDP (Plasma Display Panel) operation using active shutter glasses and crosstalk measurement method and investigate the major cause of 3D crosstalk and extend conventional 3D crosstalk using full white and full black image input to Gray-to-Gray (GtoG) 3D crosstalk. We suggest a specific method to reduce Gray-to-Gray 3D crosstalk by using Look up Table (LUT) and sub-field mapping in PDP. And then, we verify the method by measuring GtoG 3D crosstalk rate through specific test images and numerical results.

High Resolution 3D Magnetic Resonance Fingerprinting with Hybrid Radial-Interleaved EPI Acquisition for Knee Cartilage T1, T2 Mapping

  • Han, Dongyeob;Hong, Taehwa;Lee, Yonghan;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.141-155
    • /
    • 2021
  • Purpose: To develop a 3D magnetic resonance fingerprinting (MRF) method for application in high resolution knee cartilage PD, T1, T2 mapping. Materials and Methods: A novel 3D acquisition trajectory with golden-angle rotating radial in kxy direction and interleaved echo planar imaging (EPI) acquisition in the kz direction was implemented in the MRF framework. A centric order was applied to the interleaved EPI acquisition to reduce Nyquist ghosting artifact due to field inhomogeneity. For the reconstruction, singular value decomposition (SVD) compression method was used to accelerate reconstruction time and conjugate gradient sensitivity-encoding (CG-SENSE) was performed to overcome low SNR of the high resolution data. Phantom experiments were performed to verify the proposed method. In vivo experiments were performed on 6 healthy volunteers and 2 early osteoarthritis (OA) patients. Results: In the phantom experiments, the T1 and T2 values of the proposed method were in good agreement with the spin-echo references. The results from the in vivo scans showed high quality proton density (PD), T1, T2 map with EPI echo train length (NETL = 4), acceleration factor in through plane (Rz = 5), and number of radial spokes (Nspk = 4). In patients, high T2 values (50-60 ms) were seen in all transverse, sagittal, and coronal views and the damaged cartilage regions were in agreement with the hyper-intensity regions shown on conventional turbo spin-echo (TSE) images. Conclusion: The proposed 3D MRF method can acquire high resolution (0.5 mm3) quantitative maps in practical scan time (~ 7 min and 10 sec) with full coverage of the knee (FOV: 160 × 160 × 120 mm3).

The radiation shielding proficiency and hyperspectral-based spatial distribution of lateritic terrain mapping in Irikkur block, Kannur, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;N.K. Libeesh;K.V. Arun Kumar;K.ChV. Naga Kumar;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3268-3276
    • /
    • 2023
  • The practice of identifying the potential zones for mineral exploration in a speedy and low-cost method includes the use of satellite imagery analysis as a part of remote sensing techniques. It is challenging to explore the iron mineralization of a region through conventional methods which are a time-consuming process. The current study utilizes the Hyperion satellite imagery for mapping the iron mineralization and associated geological features in the Irikkur region, Kannur, Kerala. Along with the remote sensing results, the field study and laboratory-based analysis were conducted to retrieve the ground truth point and geochemical proportion to verify the iron ore mineralization. The MC simulation showed for shielding properties indicate an increase in the linear attenuation coefficient with raising the Fe2O3+SiO2 concentrations in the investigated rocks where it is varied at 0.662 MeV in the range 0.190 cm-1 - 0.222 cm-1 with rising the Fe2O3+SiO2 content from 57.86 wt% to 71.15 wt%. The analysis also revealed that when the γ-ray energy increased from 0.221 MeV to 2.506 MeV, sample 1 had the largest linear attenuation coefficient, ranging from 9.33 cm1 to 0.12 cm-1. Charnockite rocks were found to have exceptional shielding qualities, making them an excellent natural choice for radiation shielding applications.

A Comparative Study of Twist Property in KSS Curves of Embedding Degree 16 and 18 from the Implementation Perspective

  • Khandaker, Md. Al-Amin;Park, Taehwan;Nogami, Yasuyuki;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Implementation of faster pairing calculation is the basis of efficient pairing-based cryptographic protocol implementation. Generally, pairing is a costly operation carried out over the extension field of degree $k{\geq}12$. But the twist property of the pairing friendly curve allows us to calculate pairing over the sub-field twisted curve, where the extension degree becomes k/d and twist degree d = 2, 3, 4, 6. The calculation cost is reduced substantially by twisting but it makes the discrete logarithm problem easier if the curve parameters are not carefully chosen. Therefore, this paper considers the most recent parameters setting presented by Barbulescu and Duquesne [1] for pairing-based cryptography; that are secure enough for 128-bit security level; to explicitly show the quartic twist (d = 4) and sextic twist (d = 6) mapping between the isomorphic rational point groups for KSS (Kachisa-Schaefer-Scott) curve of embedding degree k = 16 and k = 18, receptively. This paper also evaluates the performance enhancement of the obtained twisted mapping by comparing the elliptic curve scalar multiplications.

SCUBA-2 Observation of the JWST/GTO Time Domain Survey Field

  • Hyun, Minhee;Smail, Ian;Im, Myungshin;Windhorst, Roger A.;Jansen, Rolf A.;Wilmer, Christopher N.A.;Cotton, William D.;Fazio, Giovanni;Perley, Richard;Condon, James J.;Swinbank, Mark;Cohen, Seth;Lin, Li-Hwai;An, Fangxia;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.35.3-36
    • /
    • 2020
  • The Time Domain Field is one of the future GTO program fields of JWST(JWST/GTO TDS), surveying about 14' diameter field at the North Eliptical Pole(NEP) with NIRCam/NIRISS. As a part of the multi-wavelength study of the field, we have obtained SCUBA-2 850㎛ mapping which reaches a depth of σrms = 0.9mJy/beam and detect 93 sources at S/N > 3.5 ― which are expected to be highly star-forming (SFR>400M◉/yr) galaxies at z ≳ 1.5-4 and pinpoint the location at <0. " 1 accuracy of 68 sub-mm sources by identifying VLA 3GHz radio counterparts. In this talk, we will introduce the SCUBA-2 JWST/GTO TDS project and the newly discovered sub-mm sources in this field.

  • PDF

A Study on the Exclusive-OR-based Technology Mapping Method in FPGA

  • Ko, Seok-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.936-944
    • /
    • 2003
  • In this paper, we propose an AND/XOR-based technology mapping method for field programmable gate arrays (FPGAs). Due to the fixed size of the programmable blocks in an FPGA, decomposing a circuit into sub-circuits with appropriate number of inputs can achieve excellent implementation efficiency. Specifically, the proposed technology mapping method is based on Davio expansion theorem to decompose a given Boolean circuit. The AND/XOR nature of the proposed method allows it to operate on XOR intensive circuits, such as error detecting/correcting, data encryption/decryption, and arithmetic circuits, efficiently. We conduct experiments using MCNC benchmark circuits. When using the proposed approach, the number of CLBs (configurable logic blocks) is reduced by 67.6% (compared to speed-optimized results) and 57.7% (compared to area-optimized results), total equivalent gate counts are reduced by 65.5 %, maximum combinational path delay is reduced by 56.7 %, and maximum net delay is reduced by 80.5 % compared to conventional methods.

Magnetic Properties of YBCO Superconductor Bulk Materials (YBCO 초전도체 Bulk 소재에 대한 자기적 특성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.147-150
    • /
    • 2020
  • Relatively pure YBCO was first synthesized by heating a mixture of metal carbonates at temperatures between 1,000 and 1,300 K, resulting in the reaction: 4BaCO3+Y2(CO3)3+6CuCO3+(1/2-x)O2 → 2YBa2Cu3O7-x+1/3CO2. Modern syntheses of YBCO use the corresponding oxides and nitrates. The superconducting properties of YBa2Cu3O7-x are sensitive to the value of x, i.e., its oxygen content. Only those materials with 0≤x≤0.65 are superconducting below Tc, and when x ~ 0.07, the material superconducts at the highest temperature, i.e., 95 K, or in the highest magnetic fields, i.e., 120 T and 250 T when B is perpendicular and parallel to the CuO2 planes, respectively. In addition to being sensitive to the stoichiometry of oxygen, the properties of YBCO are influenced by the crystallization methods applied. YBCO is a crystalline material, and the best superconductive properties are obtained when crystal grain boundaries are aligned by careful control of annealing and quenching temperature rates. However, these alternative methods still require careful sintering to produce a quality product. New possibilities have arisen since the discovery of trifluoroacetic acid, a source of fluorine that prevents the formation of undesired barium carbonate (BaCO3). This route lowers the temperature necessary to obtain the correct phase at around 700℃. This, together with the lack of dependence on vacuum, makes this method a very promising way to achieve a scalable YBCO bulk.