• Title/Summary/Keyword: Sub-controller

Search Result 480, Processing Time 0.026 seconds

H Control of Networked Control Systems with Two Additive Time-varying Delays (시변 시간지연을 갖는 네트워크 제어 시스템의 H 제어)

  • Kim, Jae Man;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • This paper presents a stabilization method for NCS (Networked Control Systems) with two additive time-varying delays. Each time delay component between the plant and the controller has different characteristics depending on communication network, and has the upper and lower bounds. The time delay occurring from the controller to the plant has an effect on the time delay occurring from the plant to the controller, and the relationship between two delays is taken into account on the stability analysis. Based on the two additive delay components and the bound conditions, the appropriate Lyapunov-Krasovskii functional and the LMI (Linear Matrix Inequality) method derive the stability condition and the $H_{\infty}$ norm constraint for time-varying delayed NCS. Simulation results are finally given to demonstrate the effectiveness of the proposed method.

Mitigation of Sub-synchronous Oscillation Caused by Thyristor Controlled Series Capacitor Using Supplementary Excitation Damping Controller

  • Wu, Xi;Jiang, Ping;Chen, Bo-Lin;Xiong, Hua-Chuan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • The Test Signal Method is adopted to analyze the impact of thyristor controlled series capacitor (TCSC) on sub-synchronous oscillation. The results show that the simulation system takes the risk of Sub-synchronous Oscillation (SSO) while the TCSC is operating in the capacitive region. A supplementary excitation damping controller (SEDC) is used to mitigate SSO caused by the TCSC. A new optimization method which is aimed for optimal phase compensation is proposed. This method is realized by using the particle swarm optimization (PSO) algorithm. The simulation results show that the SEDC designed by this method has superior suitability, and that the secure operation scope of the TCSC is greatly increased.

Observer-based H Fuzzy Controller Design of Interval Type-2 Takagi-Sugeno Fuzzy Systems Under Imperfect Premise Matching (불완전한 전반부 정합 하에서의 관측기 기반 구간 2형 T-S 퍼지 시스템의 H 퍼지 제어기 설계)

  • Hwang, Sounghwan;Park, Jin Bae;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1620-1627
    • /
    • 2017
  • In this paper, we design an observer-based $H_{\infty}$ fuzzy controller for interval type-2 Takagi-Sugeno (T-S) fuzzy systems under imperfect premise matching. The designed observer-based controller can effectively estimate the state of the system and make fuzzy system satisfy the $H_{\infty}$ disturbance attenuation performance. Using the slack matrix, the derived stabilization condition is expressed in terms of a linear matrix inequality. Finally, the effectiveness of the proposed method is verified through a simulation example.

Network Implementation for automobiles using CAN (CAN을 이용한 자동차용 Network 구현)

  • Hur Hwa-Ra
    • Management & Information Systems Review
    • /
    • v.2
    • /
    • pp.335-354
    • /
    • 1998
  • In this study I construct CAN(Controller Area Network) for automobiles similar to LAN(Local Area Network) and build communication modules in the major part of an automobile to link several sub-systems. Since each station replaces the communication function of sub-systems and has various types of sensor, actuator, controller, and switch, every information about automobile's status is obtained from the network. The manufactured system showed a superior capability. The following is the contents of study. 1. The definition of communication packet through the analysis of CAN protocol. 2. The Design of modules using micro-controller 80C196CA. 3. The Network configuration.

  • PDF

A servo controller design for a quadruped walking robot (다각 보행 로보트의 서보 제어기 설계)

  • 이연정;여인택;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.75-78
    • /
    • 1987
  • This paper presents a control algorithm of servo controller for a quadruped walking robot as well as its characteristics and requirements. The control algorithm for propelling and terrain adaptive motion is described. The servo controller is being developed as a sub-project of the national project - "Development of a quadruped walking robot ". And then, this paper focuses on an overview of the current state and future works of this sub-project.b-project.

  • PDF

East H$_{\infty}$ Gain Scheduling for Uncertain Nonlinear Systems

  • Lee, Seon-Ho;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.362-366
    • /
    • 1998
  • This paper proposes a fast H$\sub$$\infty$/ gain scheduled controller that stabilizes the uncertain nonlinear system with exogenous signals. The controller is constructed at a distinct and fixed value of exogenous signals using H$\sub$$\infty$/ syn-thesis methodology. Then the constructed controller set is switched for the wide range of variation of exogenous signals. Using the derivative gain, the number of constructed and engaged controllers for the fast varying exogenous signal is reduced.

  • PDF

Selection of features and hidden Markov model parameters for English word recognition from Leap Motion air-writing trajectories

  • Deval Verma;Himanshu Agarwal;Amrish Kumar Aggarwal
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.250-262
    • /
    • 2024
  • Air-writing recognition is relevant in areas such as natural human-computer interaction, augmented reality, and virtual reality. A trajectory is the most natural way to represent air writing. We analyze the recognition accuracy of words written in air considering five features, namely, writing direction, curvature, trajectory, orthocenter, and ellipsoid, as well as different parameters of a hidden Markov model classifier. Experiments were performed on two representative datasets, whose sample trajectories were collected using a Leap Motion Controller from a fingertip performing air writing. Dataset D1 contains 840 English words from 21 classes, and dataset D2 contains 1600 English words from 40 classes. A genetic algorithm was combined with a hidden Markov model classifier to obtain the best subset of features. Combination ftrajectory, orthocenter, writing direction, curvatureg provided the best feature set, achieving recognition accuracies on datasets D1 and D2 of 98.81% and 83.58%, respectively.

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.

Fuzzy hybrid control of a wind-excited tall building

  • Kang, Joo-Won;Kim, Hyun-Su
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.381-399
    • /
    • 2010
  • A fuzzy hybrid control technique using a semi-active tuned mass damper (STMD) has been proposed in this study for mitigation of wind induced motion of a tall building. For numerical simulation, a third generation benchmark is employed for a wind-excited 76-story building. A magnetorheological (MR) damper is used to compose an STMD. The proposed control technique employs a hierarchical structure consisting of two lower-level semi-active controllers (sub-controllers) and a higher-level fuzzy hybrid controller. Skyhook and groundhook control algorithms are used as sub-controllers. When a wind load is applied to the benchmark building, each sub-controller provides different control commands for the STMD. These control commands are appropriately combined by the fuzzy hybrid controller during realtime control. Results from numerical simulations demonstrate that the proposed fuzzy hybrid control technique can effectively reduce the STMD motion as well as building responses compared to the conventional hybrid controller. In addition, it is shown that the control performance of the STMD is superior to that of the sample TMD and comparable to an active TMD, but with a significant reduction in power consumption.

Design of the $H_{\infty}$Controller for a Planner Robot System (2차원 평면운동 로봇 시스템에 대한 $H_{\infty}$ 제어기 설계)

  • 조도현;이상철;이종용
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.96-104
    • /
    • 2000
  • In this paper, an $H_{\infty}$ robust controller has been designed for a large-scale system consisted of subsystems of mutually coupled plants. The physical plant, a two-dimensional horizontal movement robot system, has two subsystem plants mutually coupled by links. The designed $H_{\infty}$controller has been designed to get not only the robust stability for exogenous inputs to each plant but also the good tracking performance for the reference input to each plant. The $H_{\infty}$controller has shown the superior tracking performance and robust stability compared with the proportional-plus-derivative controller through computer simulations and physical experiments.

  • PDF