• Title/Summary/Keyword: Sub-carrier

Search Result 508, Processing Time 0.025 seconds

Effect of Ce0.9Gd0.1O1.95 as a promoter upon the oxygen transfer properties of MgMnO3-δ-Ce0.9Gd0.1O1.95 composite oxygen carrier materials for chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • Chemical looping combustion (CLC) is a promising carbon capture and storage (CCS) technology whose efficiency and cost primarily relies on the oxygen carrier materials used. In this paper, gadolinium-doped ceria (GDC, Ce0.9Gd0.1O1.95) was added as a promoter to improve the oxygen transfer rate of MgMnO3-δ oxygen carrier materials. Increasing GDC content significantly increased the oxygen transfer rate of MgMnO3-δ-GDC composites for the reduction reaction due to an increase in the surface adsorption of CH4 via oxygen vacancies formed on the surface of the GDC. On the other hand, the oxygen transfer rate for the oxidation reaction decreased linearly with increasing GDC content due to the oxygen storage ability of GDC. Adsorbed oxygen molecules preferentially insert themselves into oxygen vacancies of the GDC lattice rather than reacting with (Mg,Mn)O to form MgMnO3-δ during the oxidation reaction.

Generation of Coherent Sub-Terahertz Carrier with Phase Stabilization for Wireless Communications

  • Yoshimizu, Yasuyuki;Hisatake, Shintaro;Kuwano, Shigeru;Terada, Jun;Yoshimoto, Naoto;Nagatsuma, Tadao
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.569-575
    • /
    • 2013
  • In this paper, we present a photonic approach for generating highly stable coherent sub-terahertz (THz) signals for wireless communications. As proof-of-concept we transmit data at 100 GHz carrier frequency using on-off keying modulation and heterodyne detection. The sub-THz carrier signals are generated by photo-mixing two optical carrier signals at different frequencies, extracted from an optical frequency comb. We introduce a novel system to stabilize the phase of the optical carrier signals. Error-free transmission is successfully achieved up to a bit rate of 8.5 Gbit/s at 100 GHz.

PAPR Analysis of the OFDMA and SC-FDMA in the Uplink of a Mobile Communication System

  • Li, Yingshan;Lee, Il-Jin;Kim, Jang-Su;Ryu, Heung-Gyoon
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • In recent years, OFDMA(orthogonal frequency division multiple access) and SC-FDMA(Single Carrier Frequency Division Multiple Access) have been widely studied for the uplink of a mobile communication system. In this paper, PAPR(Peak-to-Average Power Ratio) and BER(Bit Error Rate) performance of the OFDMA and SC-FDMA systems are studied in relation to the uplink of a mobile communication system. Three kinds of sub-carrier allocation methods in the OFDMA system and 2 kinds of sub-carrier allocation methods in SC-FDMA system are suggested to compare and improve system performance. Simulation results show that in the OFDMA system, the first sub-band allocation method has better PAPR reduction performance than the other methods. In the SC-FDMA system, the distributed allocation method offers similar P APR, compared with the sub-band allocation method. P APR can be further reduced by adding a spectrum shaping filter with an appropriate roll of factor. Furthermore, it is found that on average, SC-FDMA can reduce the PAPR by more than 5 dB compared to OFDMA, when the total sub-carrier number is 1,024 and the sub-carrier number allocated to each user changes trom 8 to 512. Because of the frequency diversity and low PAPR characteristics, SC-FDMA system of the distributed sub-carrier allocation method can achieve better BER performance than the OFDMA system.

Evaluation of NH4+-N Ion Exchange Property using Natural Zeolite and Zeolite Carrier (천연 제올라이트와 제올라이트 담체를 이용한 NH4+-N 이온교환 특성 평가)

  • Lee, Kwang Hyun;Park, Min Suk;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.750-757
    • /
    • 2009
  • The ammonium ion exchange characteristics of natural zeolite were investigated to remove ${NH_4}^+-N$. The effect of water temperature, particle size and competitive cation on the exchange capacity was examined. Ammonium ion exchange capacity tended to decrease when the temperature increased from $25^{\circ}C$ to $40^{\circ}C$. Exchange capacity was increased according to the particle size of natural zeolite comes to be small. Batch isotherm experiments were conducted for measuring ammonium ion exchange capacity. The ion exchange capacity was well described either by the Langmuir isotherm model or by the Freundlich isotherm model. The ammonium ion exchange capacity ($q_m$) of zeolite carrier can be calculated $11.744mg-{NH_4}^+/g$-carrier. The ion exchange capacity of manufactured zeolite carrier was showed a similar tendency as ion exchange capacity of powder-sized natural zeolite. Therefore, zeolite carrier can be used for increasing of nitrogen removal efficiency in the wastewater treatment plants.

Characteristics of VOx Thin Film, NiOx Thin Film, and CuIx Thin Film for Carrier Selective Contacts Solar Cells (전하선택접촉 태양전지 적용을 위한 VOx 박막, NiOx 박막, CuIx 박막의 특성 연구)

  • Kiseok Jeon;Minseob Kim;Eunbi Lee;Jinho Shin;Sangwoo Lim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.39-43
    • /
    • 2023
  • Carrier-selective contacts (CSCs) solar cells are considerably attractive on highly efficient crystalline silicon heterojunction (SHJ) solar cells due to their advantages of high thermal tolerance and the simple fabrication process. CSCs solar cells require a hole selective contact (HSC) layer that selectively collects only holes. In order to selectively collect holes, it must have a work function characteristic of 5.0 eV or more when contacted with n-type Si. The VOx, NiOx, and CuIx thin films were fabricated and analyzed respectively to confirm their potential usage as a hole-selective contact (HSC) layer. All thin films showed characteristics of band-gap engergy > 3.0 eV, work function > 5.0 eV and minority carrier lifetime > 1.5 ms.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

A Study on the Channel-Width Dependent Hot-Carrier Degradation of nMOSFET with STI (STI구조를 갖는 nMOSFET의 채널 너비에 따른 Hot-Carrier 열화 현상에 관한 연구)

  • 이성원;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.638-643
    • /
    • 2003
  • Channel width dependence of hot-carrier effect in nMOSFET with shallow trench isolation is analyzed. $I_{sub}$- $V_{G}$ and $\Delta$ $I_{ㅇ}$ measurement data show that MOSFETs with narrow channel-width are more susceptible to the hot-carrier degradation than MOSFETs with wide channel-width. By analysing $I_{sub}$/ $I_{D}$, linear $I_{D}$- $V_{G}$ characteristics, thicker oxide-thickness at the STI edge is identified as the reason for the channel-width dependent hot-carrier degradation. Using the charge-pumping method, $N_{it}$ generation due to the drain avalanche hot-carrier (DAHC) and channel hot-electron (CHE) stress are compared. are compared.

Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition (원자층 증착법으로 형성된 Al2O3 박막의 질소 도핑에 따른 실리콘 표면의 부동화 특성 연구)

  • Hong, Hee Kyeung;Heo, Jaeyeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.111-115
    • /
    • 2015
  • To improve the efficiency of the Si solar cell, high minority carrier life time is required. Therefore, the passivation technology is important to eliminate point defects on the silicon surface, causing the loss of minority carrier recombination. PECVD or post-annealing of thermally-grown $SiO_2$ is commonly used to form the passivation layer, but a high-temperature process and low thermal stability is a critical factor of low minority carrier lifetime. In this study, atomic layer deposition was used to grow the $Al_2O_3$ passivation layer at low temperature process. $Al_2O_3$ was selected as a passivation layer which has a low surface recombination velocity because of the fixed charge density. For the high charge density, an improved minority carrier lifetime, and a low surface recombination, nitrogen was doped in the $Al_2O_3$ thin film and the improvement of passivation was studied.

Thickness and Annealing Effects on the Thermoelectric Properties of P-type Bi0.5Sb1.5Te3 Thin Films (P형 Bi0.5Sb1.5Te3 박막의 열전 특성에 미치는 두께 및 어닐링 효과)

  • Kim Il-Ho;Jang Kyug-Wook
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • P-type $Bi_{0.5}$$Sb_{1.5}$ $Te_3$ thin films were deposited by the flash evaporation technique, and their thermoelectric properties and electronic transport parameters were investigated. The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties. Annealing effects on the carrier concentration and mobility were also studied, and their variations were analyzed in conjunction with the antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the effective mean free path was found to be 3150$\AA$. No phase transformation and composition change were observed after annealing treatment, but carrier mobility increased due to grain growth. Carrier concentration decreased considerably due to reduction of the antisite defects, so that electrical conductivity decreased and Seebeck coefficient increased. When annealed at 473 K for 1 hr, Seebeck coefficient and electrical conductivity were $160\mu$V/K and 610 $W^{-1}$ $cm^{ -1}$, respectively. Therefore, the thermoelectric quality factor were also enhanced to be $16\mu$W/cm $K^2$.>.

Performance Evaluation of OFDM Systems Dependent on Subcarrier Allocation Method (부반송파 할당방식에 따른 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.295-302
    • /
    • 2014
  • OFDM technique uses multiple sub-carriers for the data transmission. Therefore, inter carrier interference is generated because of nonlinear high power amplifier and carrier frequency offset. Wireless OFDM transmission over Doppler fading channels also causes inter carrier interference. The interference increases the bit error rate in receiver. Sub-carrier allocation methods in LTE and WiMAX standards are different. The performance of OFDM systems using different sub-carrier allocation, gauged by the bit error rate, is analyzed considering the nonlinear high power amplifier, carrier frequency offset and Doppler fading channels.