• Title/Summary/Keyword: Sub-Feature

Search Result 447, Processing Time 0.03 seconds

Comparison of Chlorophyll-a Prediction and Analysis of Influential Factors in Yeongsan River Using Machine Learning and Deep Learning (머신러닝과 딥러닝을 이용한 영산강의 Chlorophyll-a 예측 성능 비교 및 변화 요인 분석)

  • Sun-Hee, Shim;Yu-Heun, Kim;Hye Won, Lee;Min, Kim;Jung Hyun, Choi
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.292-305
    • /
    • 2022
  • The Yeongsan River, one of the four largest rivers in South Korea, has been facing difficulties with water quality management with respect to algal bloom. The algal bloom menace has become bigger, especially after the construction of two weirs in the mainstream of the Yeongsan River. Therefore, the prediction and factor analysis of Chlorophyll-a (Chl-a) concentration is needed for effective water quality management. In this study, Chl-a prediction model was developed, and the performance evaluated using machine and deep learning methods, such as Deep Neural Network (DNN), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost). Moreover, the correlation analysis and the feature importance results were compared to identify the major factors affecting the concentration of Chl-a. All models showed high prediction performance with an R2 value of 0.9 or higher. In particular, XGBoost showed the highest prediction accuracy of 0.95 in the test data.The results of feature importance suggested that Ammonia (NH3-N) and Phosphate (PO4-P) were common major factors for the three models to manage Chl-a concentration. From the results, it was confirmed that three machine learning methods, DNN, RF, and XGBoost are powerful methods for predicting water quality parameters. Also, the comparison between feature importance and correlation analysis would present a more accurate assessment of the important major factors.

Performance Improvements for Silence Feature Normalization Method by Using Filter Bank Energy Subtraction (필터 뱅크 에너지 차감을 이용한 묵음 특징 정규화 방법의 성능 향상)

  • Shen, Guanghu;Choi, Sook-Nam;Chung, Hyun-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.604-610
    • /
    • 2010
  • In this paper we proposed FSFN (Filter bank sub-band energy subtraction based CLSFN) method to improve the recognition performance of the existing CLSFN (Cepstral distance and Log-energy based Silence Feature Normalization). The proposed FSFN reduces the energy of noise components in filter bank sub-band domain when extracting the features from speech data. This leads to extract the enhanced cepstral features and thus improves the accuracy of speech/silence classification using the enhanced cepstral features. Therefore, it can be expected to get improved performance comparing with the existing CLSFN. Experimental results conducted on Aurora 2.0 DB showed that our proposed FSFN method improves the averaged word accuracy of 2% comparing with the conventional CLSFN method, and FSFN combined with CMVN (Cepstral Mean and Variance Normalization) also showed the best recognition performance comparing with others.

Classification of Insulation Fault Signals for High Voltage Motors Stator Winding using Image Signal Process Technique (영상신호처리 기법을 이용한 고압전동기 고정자권선 절연결함신호 분류)

  • Park, Jae-Jun;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • Pattern classification of single and multiple discharge sources was applied using a wavelet image signal method in which a feature extraction was applied using a hidden sub-image. A feature extracting method that used vertical and horizontal images using an MSD method was applied to an averaging process for the scale of pulses for the phase. A feature extracting process for the preprocessing of the input of a neural network was performed using an inverse transformation of the horizontal, vertical, and diagonal sub-images. A back propagation algorithm in a neural network was used to classify defective signals. An algorithm for wavelet image processing was developed. In addition, the defective signal was classified using the extracted value that was quantified for the input of a neural network.

Local Linear Transform and New Features of Histogram Characteristic Functions for Steganalysis of Least Significant Bit Matching Steganography

  • Zheng, Ergong;Ping, Xijian;Zhang, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.840-855
    • /
    • 2011
  • In the context of additive noise steganography model, we propose a method to detect least significant bit (LSB) matching steganography in grayscale images. Images are decomposed into detail sub-bands with local linear transform (LLT) masks which are sensitive to embedding. Novel normalized characteristic function features weighted by a bank of band-pass filters are extracted from the detail sub-bands. A suboptimal feature set is searched by using a threshold selection algorithm. Extensive experiments are performed on four diverse uncompressed image databases. In comparison with other well-known feature sets, the proposed feature set performs the best under most circumstances.

Semi-supervised Cross-media Feature Learning via Efficient L2,q Norm

  • Zong, Zhikai;Han, Aili;Gong, Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1403-1417
    • /
    • 2019
  • With the rapid growth of multimedia data, research on cross-media feature learning has significance in many applications, such as multimedia search and recommendation. Existing methods are sensitive to noise and edge information in multimedia data. In this paper, we propose a semi-supervised method for cross-media feature learning by means of $L_{2,q}$ norm to improve the performance of cross-media retrieval, which is more robust and efficient than the previous ones. In our method, noise and edge information have less effect on the results of cross-media retrieval and the dynamic patch information of multimedia data is employed to increase the accuracy of cross-media retrieval. Our method can reduce the interference of noise and edge information and achieve fast convergence. Extensive experiments on the XMedia dataset illustrate that our method has better performance than the state-of-the-art methods.

Distorted Image Database Retrieval Using Low Frequency Sub-band of Wavelet Transform (웨이블릿 변환의 저주파수 부대역을 이용한 왜곡 영상 데이터베이스 검색)

  • Park, Ha-Joong;Kim, Kyeong-Jin;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.8-18
    • /
    • 2008
  • In this paper, we propose an efficient algorithm using wavelet transform for still image database retrieval. Especially, it uses only the lowest frequency sub-band in multi-level wavelet transform so that a retrieval system uses a smaller quantity of memory and takes a faster processing time. We extract different textured features, statistical information such as mean, variance and histogram, from low frequency sub-band. Then we measure the distances between the query image and the images in a database in terms of these features. To obtain good retrieval performance, we use the first feature (mean and variance of wavelet coefficients) to filter out most of the unlikely images. The rest of the images are considered to be candidate images. Then we apply the second feature (histogram of wavelet coefficient) to rank all the candidate images. To evaluate the algorithm, we create various distorted image databases using MIT VisTex texture images and PICS natural images. Through simulations, we demonstrate that our method can achieve performance satisfactorily in terms of the retrieval accuracy as well as the both memory requirement and computational complexity. Therefore it is expected to provide good retrieval solution for JPEG-2000 using wavelet transform.

  • PDF

Caenimonas aquaedulcis sp. nov., Isolated from Freshwater of Daechung Reservoir during Microcystis Bloom

  • Le, Ve Van;Ko, So-Ra;Lee, Sang-Ah;Kang, Mingyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.575-581
    • /
    • 2022
  • A Gram-stain-negative, white-coloured, and rod-shaped bacterium, strain DR4-4T, was isolated from Daechung Reservoir, Republic of Korea, during Microcystis bloom. Strain DR4-4T was most closely related to Caenimonas terrae SGM1-15T and Caenimonas koreensis EMB320T with 98.1% 16S rRNA gene sequence similarities. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain DR4-4T and closely related type strains were below 79.46% and 22.30%, respectively. The genomic DNA G+C content was 67.5%. The major cellular fatty acids (≥10% of the total) were identified as C16:0, cyclo C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Strain DR4-4T possessed phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol as the main polar lipids and Q-8 as the respiratory quinone. The polyamine profile was composed of putrescine, cadaverine, and spermidine. The results of polyphasic characterization indicated that the isolated strain DR4-4T represents a novel species within the genus Caenimonas, for which the name Caenimonas aquaedulcis sp. nov. is proposed. The type strain is DR4-4T (=KCTC 82470T =JCM 34453T).

Face recognition invariant to partial occlusions

  • Aisha, Azeem;Muhammad, Sharif;Hussain, Shah Jamal;Mudassar, Raza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2496-2511
    • /
    • 2014
  • Face recognition is considered a complex biometrics in the field of image processing mainly due to the constraints imposed by variation in the appearance of facial images. These variations in appearance are affected by differences in expressions and/or occlusions (sunglasses, scarf etc.). This paper discusses incremental Kernel Fisher Discriminate Analysis on sub-classes for dealing with partial occlusions and variant expressions. This framework focuses on the division of classes into fixed size sub-classes for effective feature extraction. For this purpose, it modifies the traditional Linear Discriminant Analysis into incremental approach in the kernel space. Experiments are performed on AR, ORL, Yale B and MIT-CBCL face databases. The results show a significant improvement in face recognition.

Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP) (방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출)

  • Lee, Hee-Jae;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.692-702
    • /
    • 2017
  • Face detection using the LBP based feature descriptor has issues in that it can not represent spatial information between facial shape and facial components such as eyes, nose and mouth. To address these issues, in previous research, a facial image was divided into a number of square sub-regions. However, since the sub-regions are divided into different numbers and sizes, the division criteria of the sub-region suitable for the database used in the experiment is ambiguous, the dimension of the LBP histogram increases in proportion to the number of sub-regions and as the number of sub-regions increases, the sensitivity to facial orientation rotation increases significantly. In this paper, we present a novel facial region segmentation method that can solve in-plane rotation issues associated with LBP based feature descriptors and the number of dimensions of feature descriptors. As a result, the proposed method showed detection accuracy of 99.0278% from a single facial image rotated in orientation.

Feature Recognition: the State of the Art

  • JungHyun Han
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.68-85
    • /
    • 1998
  • Solid modeling refers to techniques for unambiguous representations of three-dimensional objects. Feature recognition is a sub-discipline focusing on the design and implementation of algorithms for detecting manufacturing information such as holes, slots, etc. in a solid model. Automated feature recognition has been an active research area in stolid modeling for many years, and is considered to be a critical component for CAD/CAM integration. This paper gives a technical overview of the state of the art in feature recognition research. Rather than giving an exhaustive survey, I focus on the three currently dominant feature recognition technologies: graph-based algorithms, volumetric decomposition techniques, and hint-based geometric reasoning. For each approach, I present a detailed description of the algorithms being employed along with some assessments of the technology. I conclude by outlining important open research and development issues.

  • PDF