Browse > Article
http://dx.doi.org/10.4014/jmb.2201.01023

Caenimonas aquaedulcis sp. nov., Isolated from Freshwater of Daechung Reservoir during Microcystis Bloom  

Le, Ve Van (Cell factory Research Centre, Korea Research Institute of Bioscience and Biotechnology)
Ko, So-Ra (Cell factory Research Centre, Korea Research Institute of Bioscience and Biotechnology)
Lee, Sang-Ah (Environmental Safety Groups, Korea Institute of Science and Technology (KIST) Europe)
Kang, Mingyeong (Cell factory Research Centre, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hee-Mock (Cell factory Research Centre, Korea Research Institute of Bioscience and Biotechnology)
Ahn, Chi-Yong (Cell factory Research Centre, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.5, 2022 , pp. 575-581 More about this Journal
Abstract
A Gram-stain-negative, white-coloured, and rod-shaped bacterium, strain DR4-4T, was isolated from Daechung Reservoir, Republic of Korea, during Microcystis bloom. Strain DR4-4T was most closely related to Caenimonas terrae SGM1-15T and Caenimonas koreensis EMB320T with 98.1% 16S rRNA gene sequence similarities. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain DR4-4T and closely related type strains were below 79.46% and 22.30%, respectively. The genomic DNA G+C content was 67.5%. The major cellular fatty acids (≥10% of the total) were identified as C16:0, cyclo C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Strain DR4-4T possessed phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol as the main polar lipids and Q-8 as the respiratory quinone. The polyamine profile was composed of putrescine, cadaverine, and spermidine. The results of polyphasic characterization indicated that the isolated strain DR4-4T represents a novel species within the genus Caenimonas, for which the name Caenimonas aquaedulcis sp. nov. is proposed. The type strain is DR4-4T (=KCTC 82470T =JCM 34453T).
Keywords
Caenimonas aquaedulcis; Microcystis aeruginosa; freshwater; polyphasic characterization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kimura M. 1983. The neutral theory of molecular evolution, Cambridge: Cambridge University Press.
2 Ryu SH, Lee DS, Park M, Wang Q, Jang HH, Park W, et al. 2008. Caenimonas koreensis gen. nov., sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 58: 1064-1068.   DOI
3 Kim SJ, Weon HY, Kim YS, Moon JY, Seok SJ, Hong SB, et al. 2012. Caenimonas terrae sp. nov., isolated from a soil sample in Korea, and emended description of the genus Caenimonas Ryu et al. 2008. J. Microbiol. 50: 864-868.   DOI
4 Parte AC. 2018. LPSN - List of prokaryotic names with standing in nomenclature (Bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68: 1825-1829.   DOI
5 Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 60: 249-266.   DOI
6 Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
7 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617.   DOI
8 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
9 Nei M, Kumar S, Takahashi K. 1998. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc. Natl. Acad. Sci. USA 95: 12390-12397.   DOI
10 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.   DOI
11 Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131.   DOI
12 Xu J, Sheng M, Yang Z, Qiu J, Zhang J, Zhang L, He J. 2020. Caenimonas sedimenti sp. nov., isolated from sediment of the wastewater outlet of an agricultural chemical plant. Curr. Microbiol. 77: 3767-3772.   DOI
13 Xu L, Han Y, Yi M, Yi H, Guo E, Zhang A. 2019. Shift of millet rhizosphere bacterial community during the maturation of parent soil revealed by 16S rDNA high-throughput sequencing. Appl. Soil Ecol. 135: 157-165.   DOI
14 Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466.   DOI
15 Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. 2020. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res. 48: D606-D612.
16 Dahal RH, Lee H, Chaudhary DK, Kim DY, Son J, Kim J, et al. 2021. Caenimonas soli sp. nov., isolated from soil. Arch. Microbiol. 203: 1123-1129.   DOI
17 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.   DOI
18 Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210-3212.   DOI
19 Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.   DOI
20 Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87.   DOI
21 Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241.   DOI
22 Tindall BJ, Sikorski J, Smibert RA, Krieg NR. 2007. Phenotypic characterization and the principles of comparative systematics. pp. 330-393. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds), Methods for General and Molecular Microbiology, 3rd Ed. American Society for Microbiology, Washington DC, USA.
23 Hibbing ME, Fuqua C, Parsek MR, Peterson SB. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8: 15-25.   DOI
24 Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.   DOI
25 Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182.   DOI
26 Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286.   DOI
27 Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.   DOI
28 Smibert R, Krieg NR. 1994. Phenotypic characterization, pp. 607-654. In Gerhardt P, Murray R, Wood W, Krieg N (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington DC, USA
29 Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493-496.   DOI
30 Sasser M. 2001. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101.
31 Kates M. 1972. Techniques of lipidology, Elsevier, New York, USA.
32 Helfrich EJN, Lin GM, Voigt CA, Clardy J. 2019. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J. Org. Chem. 15: 2889-2906.   DOI
33 Oren A, Duker S, Ritter S. 1996. The polar lipid composition of Walsby's square bacterium. FEMS Microbiol. Lett. 138: 135-140.   DOI
34 Busse J, Auling G. 1988. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11: 1-8.   DOI
35 Sharrar AM, Crits-Christoph A, Meheust R, Diamond S, Starr EP, Banfield JF. 2020. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 11: e00416-20.
36 Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. 2017. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front. Pharmacol. 8: 828.   DOI
37 Zhang J, Du L, Liu F, Xu F, Hu B, Venturi V, et al. 2014. Involvement of both PKS and NRPS in antibacterial activity in Lysobacter enzymogenes OH11. FEMS Microbiol. Lett. 355: 170-176.   DOI
38 Schoner TA, Gassel S, Osawa A, Tobias NJ, Okuno Y, Sakakibara Y, et al. 2016. Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. Chembiochem 17: 247-253.   DOI
39 Hegemann JD, Zimmermann M, Xie X, Marahiel MA. 2015. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48: 1909-1919.   DOI
40 Ding YP, Khan IU, Li MM, Xian WD, Liu L, Zhou EM, et al. 2019. Calidifontimicrobium sediminis gen. nov., sp. nov., a new member of the family Comamonadaceae. Int. J. Syst. Evol. Microbiol. 69: 434-440.   DOI
41 Tamaoka J. 1986. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol. 123: 251-256.   DOI
42 Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351.   DOI
43 Auch AF, von Jan M, Klenk HP, Goker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2: 117-134.   DOI
44 Busse HJ. 2011. Polyamines, pp. 239-259. In Rainey F, Oren A, (eds.), Academic Press, Methods in Microbiology.