• 제목/요약/키워드: Sub-Elements

검색결과 1,157건 처리시간 0.025초

적색 안료인 탄탈륨 질화물(Ta3N5)의 특성에 도핑 물질 및 최종질화물의 산소/질소 함량이 미치는 영향 (Effects of Doping Elements and the Amounts of Oxygen/Nitrogen Contents in Final Nitrides on the Characteristics of Red Pigment of Tantalum Nitrides (Ta3N5))

  • 박은영;피재환;김유진;조우석;김경자
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.396-402
    • /
    • 2009
  • Tantalum nitrides ($Ta_3N_5$) have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.

2005년 봄철 부산 서부지역 PM10, PM2.5의 금속성분 특성 (The Metallic Elements of PM10 and PM2.5 in Western Region of Busan in the Springtime of 2005)

  • 전병일
    • 환경영향평가
    • /
    • 제16권5호
    • /
    • pp.327-340
    • /
    • 2007
  • The $PM_{10}$ and $PM_{2.5}$ aerosols were collected at Busan from March to May, 2005, and the concentrations of some metallic elements were analysed to study their characteristics. The mean concentration of $PM_{10}$ was $66.5{\pm}23.0{\mu}g/m^3$ with a range of 22.2 to $118.1{\mu}g/m^3$. The mean concentration of $PM_{2.5}$ was $46.1{\pm}17.2{\mu}g/m^3$ with a range of 9.7 to $83.3{\mu}g/m^3$. The ratio of $PM_{2.5}/PM_{10}$ was 0.69 at Busan. The distribution of metallic elements for $PM_{10}$ and $PM_{2.5}$ were Cd${\ldots}$ ${\ldots}$ $PM_{10}$ were $94.9{\mu}g/m^3$ and $63.7{\mu}g/m^3$, respectively. And The mean mass concentrations of Asian dust and non Asian dust in $PM_{2.5}$ were $56.9{\mu}g/m^3$ and $45.1{\mu}g/m^3$, respectively. The mean values of crustal enrichment factors for five elements (Cd, Cu, Pb, V and Zn) were all higher than 10, possibly suggesting the influence of anthropogenic sources. The soil contribution ratios for $PM_{10}$ and $PM_{2.5}$ were 20.5% and 19.4, respectively.

공학 설계 패러다임 변화에 따른 팀 창의성의 정의 및 하위 영역과 요소 도출 (A Study on the Definition of Team Creativity upon the Design Paradigm and Their Sub-domains and Element Extraction)

  • 김태훈
    • 공학교육연구
    • /
    • 제18권3호
    • /
    • pp.13-23
    • /
    • 2015
  • This paper attempts to take an in-depth study of the importance of teams and their creativity according to changes of recent design paradigm in engineering and to draw conclusions of the sub-domains and their element extraction. For this purpose, theoretical consideration was reviewed to present the definition of creativity and its sub-domains and elements. Besides, the two steps of expert validation test were conducted to extract the definition of creativity and its sub-domains and elements. The team creativity is defined as a team ability to come up with fresh and useful ideas and to lead them to get meaningful results through cooperative interactions among team members to solve problems given to them based on each member's creativity. Totally, 4 subs -domains and 16 sub-elements were extracted to get to know their influence on the team creativity. This includes a team size, characteristics of team members, and a team structure in team organization domain. To evaluate team atmosphere, elements such as sensibility, fellowship, teamwork, reliability, autonomy and open minded feature are included. In the team activity domain, strategies for solving problems, activities for divergent thinking, activities for convergence thinking and team interaction are included. Also, the sub-domain for team management includes a task, process and conflict management.

Radiological hazards assessment associated with granitoid rocks in Egypt

  • Ahmed E. Abdel Gawad;Masoud S. Masoud;Mayeen Uddin Khandaker;Mohamed Y. Hanfi
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2239-2246
    • /
    • 2024
  • The present study aimed to assess the radioactive hazards associated with the application of granitoid rocks in building materials. An HPGe spectrometer was used to detect the levels of the radioactive elements uranium-238, thorium-232, and potassium-40 in the granitoid rocks. The results showed that the levels of these elements were lower (38.32 < 33 Bq kg-1), comparable (47.19-45 Bq kg-1) and higher (992.26 ≫> 412 Bq kg-1) than the worldwide limits for 238U, 232Th, and 40K concentration, respectively. The exposure to gamma radiation of granitoid rocks was studied by various radiological hazard variables like the absorbed dose rate (Dair), the outdoor and indoor annual effective dose (AEDout and AEDin), and excess lifetime cancer risk (ELCR). A variety of statistical methods, including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) was used, to study the relationship between the radioactive elements and the radiological hazards. According to statistical analysis, the main radioactive risk of granitoid rocks is contributed to by the elements uranium-238, thorium-232, and potassium-40. Granitoid rocks can be applied in building materials, but under control to prevent risk to the public.

부산지역 여름철 해풍 발생 시 미세먼지와 초미세먼지 중의 이온성분 특성 (Characteristics of Fine Particle Concentration and Ionic Elements of PM2.5 during Sea Breeze Occurrences in Summertime in Busan)

  • 전병일
    • 한국환경과학회지
    • /
    • 제30권6호
    • /
    • pp.465-474
    • /
    • 2021
  • This research investigated the characteristics of fine particle concentration and ionic elements of PM2.5 during sea breeze occurrences during summertime in Busan. The PM10 and PM2.5 concentrations of summertime sea breeze occurrence days in Busan were 46.5 ㎍/m3 and 34.9 ㎍/m3, respectively. The PM10 and PM2.5 concentrations of summertime non-sea breeze occurrence days in Busan were 25.3 ㎍/m3 and 14.3 ㎍/m3, respectively. The PM2.5/PM10 ratios of sea breeze occurrence days and non-sea breeze occurrence days were 0.74 and 0.55, respectively. The SO42-, NH4+, and NO3- concentrations in PM2.5 of sea breeze occurrence days were 9.20 ㎍/m3, 4.26 ㎍/m3, and 3.18 ㎍/m3 respectively. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) of sea breeze occurrence days were 0.33 and 0.05, respectively. These results indicated that understanding the fine particle concentration and ionic elements of PM2.5 during sea breeze summertime conditions can provide insights useful for establishing a control strategy of urban air quality.

Spatial Distributions of Alloying Elements Obtained from Atom Probe Tomography of the Amorphous Ribbon Fe75C11Si2B8Cr4

  • Shin, Jinkyung;Yi, Seonghoon;Pradeep, Konda Gokuldoss;Choi, Pyuck-Pa;Raabe, Dierk
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.190-193
    • /
    • 2013
  • Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of $Fe_{75}C_{11}Si_2B_8Cr_4$ were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of $59{\times}59{\times}33nm^3$, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.

충청남도 태안 교외대기 PM10, PM2.5의 중금속 농도 특성과 기원 추적연구 (A study of origins and characteristics of metallic elements in PM10 and PM2.5 at a suburban site in Taean, Chungchengnam-do)

  • 오상민;윤숙희;박재선;허유정;이수형;유은진;김민섭
    • 한국입자에어로졸학회지
    • /
    • 제19권4호
    • /
    • pp.111-128
    • /
    • 2023
  • Chungcheongnam-do has various emission sources, including large-scale facilities such as power plants, steel and petrochemical industry complexes, which can lead to the severe PM pollution. Here, we measured concentrations of PM10, PM2.5, and its metallic elements at a suburban site in Taean, Chungcheongnam-do from September 2017 to June 2022. During the measurement period, the average concentrations of PM10 and PM2.5 were 58.6 ㎍/m3 (9.6~379.0 ㎍/m3) and 35.0 ㎍/m3 (6.1~132.2 ㎍/m3), respectively. The concentration of PM10 and PM2.5 showed typical seasonal variation, with higher concentration in winter and lower concentration in summer. When high concentrations of PM2.5 occurred, particulary in winter, the fraction of Zn and Pb components considerably increased, indicating a significant contribution of Zn and Pb to high-PM2.5 concentration. In addition, Zn and Pb exhibited the highest correlation coefficient among all other metallic elements of PM2.5. A backward trajectory cluster analysis and CPF model were performed to examine the origin of PM2.5. The high concentration of PM2.5 was primarily influenced by emissions from industrial complexes located in the northeast and northwest areas.

성별에 따라 아동이 지각한 부모의 방임학대와 또래애착이 학교생활적응에 미치는 영향 (The Effect of Perceived Parental Abuse and Neglect and Peer Attachment on School Life Adjustment according to Children's Gender)

  • 김혜금
    • Human Ecology Research
    • /
    • 제52권1호
    • /
    • pp.11-19
    • /
    • 2014
  • The purpose of this study was to analyze the effect of perceived parental neglect and abuse and peer attachment on school life adjustment according to children's gender. A total of 2,264 5th graders from the second Korea Child-Adolescent Panel Survey participated. The results were as follows: First, the boys had higher parental neglect and abuse scores than the girls, while the girls had higher peer attachment scores and higher school life adjustment scores than the boys. Second, every sub-element of school life adjustment was significantly negatively correlated with parental neglect and abuse regardless of the children's gender. Every sub-element of school life adjustment was significantly positively correlated with the 'communication' and 'trust' sub-elements of peer attachment regardless of the children's gender. In the case of the boys, the 'study activity' and 'peer relation' sub-elements of school life adjustment were significantly negatively correlated with the 'alienation' sub-element of peer attachment. For the girls, every sub-element of school life adjustment was significantly negatively correlated with the alienation sub-element of peer attachment. Finally, the factors of 'parental neglect and abuse', and the peer attachment sub-elements of 'communication', and 'trust' significantly predicted the boys' school life adjustment, while for girls, the significant predictors were 'parental neglect and abuse', 'communication', 'trust', and 'alienation'.

기계적 합금화를 이용한 Al0.75V2.82CrZr 내화 고엔트로피 합금의 경량화 및 고온 열안정성 연구 (Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying)

  • 김민수;이한성;안병민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.478-483
    • /
    • 2023
  • High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent high-temperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the high-temperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the high-temperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.

Production and investigation of 3D printer ABS filaments filled with some rare-earth elements for gamma-ray shielding

  • Batuhan Gultekin;Fatih Bulut;Hatice Yildiz;Hakan Us;Hasan Ogul
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4664-4670
    • /
    • 2023
  • Radiation is the main safety issue for almost all nuclear applications, which must be controlled to protect living organisms and the surrounding materials. In this context, radiation shielding materials have been investigated and used in nuclear technologies. The choice of materials depends on the radiation usage area, type, and energy. Polymer materials are preferred in radiation shielding applications due to their superior characteristics such as chemical inertness, resistivity, low weight, flexibility, strength, and low cost. In the presented work, ABS polymer material, which is possibly the most commonly used material in 3D printers, is mixed with Gd2O3 and Er2O3 nanoparticles. ABS filaments containing these rare-earth elements are then produced using a filament extruder. These produced filaments are used in a 3D printer to create shielding samples. Following the production of shielding samples, SEM, EDS, and gamma-ray shielding analyses (including experiments, WinXCOM, GEANT4, and FLUKA) are performed. The results show that 3D printing technology offers significant enhancements in creating homogeneous and well-structured materials that can be effectively used in gamma-ray shielding applications.