DOI QR코드

DOI QR Code

Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying

기계적 합금화를 이용한 Al0.75V2.82CrZr 내화 고엔트로피 합금의 경량화 및 고온 열안정성 연구

  • Minsu Kim (Department of Energy Systems Research, Ajou University) ;
  • Hansung Lee (Department of Energy Systems Research, Ajou University) ;
  • Byungmin Ahn (Department of Energy Systems Research, Ajou University)
  • 김민수 (아주대학교 에너지시스템학과) ;
  • 이한성 (아주대학교 에너지시스템학과) ;
  • 안병민 (아주대학교 에너지시스템학과)
  • Received : 2023.11.12
  • Accepted : 2023.12.20
  • Published : 2023.12.28

Abstract

High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent high-temperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the high-temperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the high-temperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C1005478).

References

  1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T.-S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang: Adv. Eng. Mater., 6 (2004) 299. 
  2. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu: Prog. Mater. Sci., 61 (2014) 1. 
  3. B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent: Mater. Sci. Eng. A, 375-377 (2004) 213. 
  4. M. J. Chae, A. Sharma, M. C. Oh and B. Ahn: Met. Mater. Int., 27 (2021) 629. 
  5. W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai and J. W. Yeh: Intermetallics, 26 (2012) 44. 
  6. A. Sharma, M. C. Oh and B. Ahn: Mater. Sci. Eng. A, 797 (2020) 140066. 
  7. M. J. Chae, H. Lee, A. Sharma and B. Ahn: Powder Metall., 64 (2021) 228. 
  8. A. Sharma, H. Lee and B. Ahn: Met. Mater. Int., 28 (2022) 2216.  https://doi.org/10.1007/s12540-021-01125-0
  9. M. C. Oh, A. Sharma, H. Lee and B. Ahn: Intermetallics, 139 (2021) 107369.  https://doi.org/10.1016/j.intermet.2021.107369
  10. J. Wang, J. Chai, H. Zhang, P. Tai, C. Liu, L. Niu, W. He, W. Huang, R. Shu, L. Luo, W. Li, Y. Zhu, C. Yao and P. Gao: J. Nucl. Mater., 552 (2021) 153006. 
  11. H. Lee, A. Sharma and B. Ahn: J. Alloy Compd., 947 (2023) 169545. 
  12. N. R. Philips, M. Carl and N. J. Cunnigham: Metall. Mater. Trans. A, 51 (2020) 3299. 
  13. T. Zhang, H. W. Deng, Z. M. Xie, R. Liu, J. F. Yang, C. S. Liu, X. P. Wang, Q. F. Fang and Y. Xiong: J. Mater. Sci. Technol., 52 (2020) 29. 
  14. O. N. Senkov, S. Gorsse and D. B. Miracle: Acta Mater., 175 (2019) 394. 
  15. Y. Kim, S. H. Yang, S. Lee, S. H. Lee and J. W. Noh: J. Powder Mater., 27 (2020) 373. 
  16. Y. Kang, J. J. Choi, N. H. Kwon, D. G. Kim and K. J. Lee: J. Powder Mater., 26 (2019) 487. 
  17. W. J. Choi, C. W. Park, J. H. Park, Y. D. Kim and J. Byun: J. Powder Mater., 26 (2019) 156. 
  18. A. Ferrari, Y. Lysogorskiy and R. Drautz: Phys. Rev. Mater., 5 (2021) 063606. 
  19. W. Lai, F. Vogel, X. Zhao, B. Wang, Y. Yi, D. You, X. Tong, W. Li, X. Yu and X. Wang: Mater. Res. Lett., 10 (2022) 133. 
  20. P. Jehanno, H. Kestler, A. Venskutonis, M. Boning, M. Heilmaier, B. Bewlay and M. Jackson: Metall. Mater. Trans. A, 36 (2005) 515. 
  21. M. C. Gao, C. S. Carney, O. N. Dogan, P. D. Jablonksi, J. A. Hawk and D. E. Alman: JOM, 67 (2015) 2653. 
  22. S. Wei, S. J. Kim, J. Kang, Y. Zhang, Y. Zhang, T. Furuhara, E. S. Park and C. C. Tasan: Nat. Mater., 19 (2020) 1175. 
  23. J. Zhou, Y. Cheng, Y. Chen and X. Liang: Int. J. Refract. Hard Met., 105 (2022) 105836. 
  24. A. B. Melnick and V. K. Soolshenko: J. Alloys Compd., 694 (2017) 223. 
  25. M. Wu, S. Wang, F. Xiao, G. Shen, Y. Tian, C Yang, C Zhu, D Wang, D. Shu and B. Sun: Mater. Sci. Eng. A, 842 (2022) 143112. 
  26. Z. Wang, S. Chen, S. Yang, Q. Luo, Y. Jin, W. Xie, L. Zhang and Q. Li: J. Mater. Sci. Technol., 151 (2023) 41. 
  27. J. Yi, L. Yang, L. Wang and M. Xu: Met. Mater. Int., 28 (2022) 115. 
  28. H. Lee, A. Sharma and B. Ahn: Wear, 530-531 (2023) 205011. 
  29. C. Park, H. Lee, N. Lee, B. Ahn and J. Lee: J. Hazard. Mater., 440 (2022) 129825. 
  30. B. Kang, J. Lee, H. J. Ryu and S. H. Hong: J. Alloys Compd., 767 (2018) 1012. 
  31. J. A. Smeltzer, M. T. Burton, B. C. Hornbuckle, A. K. Giri, K. A. Darling, M. P. Harmer and C. J. Marvel: Mater. Des., 210 (2021) 110070. 
  32. C. M. Liu, H. M. Wang, S. Q. Zhang, H. B. Tang and A. L. Zhang: J. Alloys Compd., 583 (2014) 162. 
  33. J. Han, P. Hu, X. Zhang and S. Meng: Scr. Mater., 57 (2007) 825. 
  34. C. E. Aumann, G. L. Skofronick and J. A. Martin: J. Vac. Sci., 13 (1995) 1178. 
  35. D. J. Young and M. Cohen: J. Electrochem. Soc., 124 (1977) 769. 
  36. M. Wang, Z. L. Ma, Z. Q. Xu and X. W. Cheng: Mater. Sci. Eng. A, 808 (2021) 140848.