• Title/Summary/Keyword: Sub-Chamber

Search Result 429, Processing Time 0.039 seconds

Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2 (초임계 CO2에 의한 셰일 및 사암의 물성변화 및 스웰링에 관한 연구)

  • Choi, Chae-Soon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.266-275
    • /
    • 2012
  • In this study, a method is devised to implement a supercritical $CO_2$ ($scCO_2$) injection environment on a laboratory scale and to investigate the effects of $scCO_2$ on the properties of rock specimens. Specimens of shale and sandstone normally constituting the cap rock and reservoir rock, respectively, were kept in a laboratory reactor chamber with $scCO_2$ for two weeks. From this stage, a chemical reaction between rock surface and the $scCO_2$ was induced. The effect of saline water was also investigated by comparing three conditions ($scCO_2$-rock, $scCO_2-H_2O$-rock and $scCO_2$-brine(1M)-rock). Finally, we checked the changes in the properties before and after the reaction by destructive and nondestructive testing procedures. The swelling of shale was a main concern in this case. The experimental results suggested that $scCO_2$ has a greater effect on the swelling of the shale than pure water and brine. It was also observed that the largest swelling displacement of shale occurred after a reaction with the $H_2O-scCO_2$ solution. The results of a series of the destructive and nondestructive tests indicate that although each of the property changes of the rock differed depending on the reaction conditions, the $H_2O-scCO_2$ solution had the greatest effect. In this study, shale was highly sensitive to the reaction conditions. These results provide fundamental information pertaining to the stability of $CO_2$ storage sites due to physical and chemical reactions between the rocks in these sites and $scCO_2$.

Fundamental Study on Establishing the Subgrade Compaction Control Criteria of DCPT with Laboratory Test and In-situ Tests (실내 및 현장실험를 통한 DCPT의 노상토 다짐관리기준 정립에 관한 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-116
    • /
    • 2008
  • In this study, in-situ testing method, Dynamic Cone Penetration Test(DCPT) was presented to establish a new compaction control criteria with using mechanical property like elastic modulus instead of unit weight for field compaction control. Soil chamber tests and in-situ tests were carried out to confirm DCPT tests can predict the designed elastic modulus after field compaction, and correlation analysis among the DCPT, CBR and resilient modulus of sub grade were performed. Also, DCPT test spacing criteria in the construction site was proposed from the literature review. In the result of laboratory tests, Livneh's equation was the best in correlation between PR of DCPT and CBR, George and Pradesh's equation was the best in the predicted resilient modulus. In the resilient modulus using FWD, Gudishala's equation estimates little larger than predicted resilient modulus and Chen's equation estimates little smaller. And KICT's equation estimates the modulus smaller than predicted resilient modulus. But using the results of laboratory resilient modulus tests considering the deviatoric and confining stress from the moving vehicle, the KICT's equation was the best. In the results of In-situ DCPT tests, the variation of PR can occur according to size distribution of penetrate points. So DCPT test spacing was proposed to reduce the difference of PR. Also it was shows that average PR was different according to subgrade materials although the subgrade was satisfied the degree of compaction. Especially large sized materials show smaller PR, and it is also found that field water contents have influence a lot of degree of compaction but a little on the average PR of the DCPT tests.

  • PDF

Manganese Distribution in Brains of Sprague Dawley Rats after 60 Days of Stainless Steel Welding-Fume Exposure

  • Yu, Il-Je;Park, Jung-Duck;Park, Eon-Sub;Song, Kyung-Seuk;Han, Kuy-Tae;Han, Jeong-Hee;Chung, Yong-Hyun;Choi, Byung-Sun;Chung, Kyu-Hyuck;Cho, Myung-Haeng
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.3
    • /
    • pp.85-93
    • /
    • 2003
  • Welders working in a confined space, like in the shipbuilding industry, are at risk of being exposed to high concentrations of welding fumes and developing pneumoconiosis or other welding-fume exposure related diseases. Among such diseases, manganism resulting from welding-fume exposure remains a controversial issue, as the movement of manganese into specific brain regions has not been clearly established. Accordingly, to investigate the distribution of manganese in the brain after welding-fume exposure, male Sprague Dawley rats were exposed to welding fumes generated from manual metal arc stainless steel (MMA-SS) at concentrations of $63.6{\pm}4.1$ $mg/m^3$ (low dose, containing 1.6 $mg/m^3$ Mn) and $107.1{\pm}6.3$ $mg/m^3$ (high dose, containing 3.5 $mg/m^3$ Mn) total suspended particulates for 2 hrs per day, in an inhalation chamber over a 60-day period. Blood, brain, lungs and liver samples were collected after 2 hr, 15, 30, and 60 days of exposure and the tissues analyzed for their manganese concentrations using an atomic absorption spectrophotometer. Although dose- and time-dependent increases in the manganese concentrations were found in the lungs and livers of the rats exposed for 60 days, only slight manganese increases were observed in the blood during this period. Major statistically significant increases in the brain manganese concentrations were detected in the cerebellum after 15 days of exposure and up until 60 days. Slight increases in the manganese concentrations were also found in the substantia nigra, basal ganglia (caudate nucleus, putamen, and globus pallidus), temporal cortex, and frontal cortex, thereby indicating that the pharmacokinetics and distribution of manganese inhaled from welding fumes would appear to be different from those resulting from manganese-only exposure.

  • PDF

Estimation of Cardinal Temperatures for Germination of Seeds from the Common Ice Plant Using Bilinear, Parabolic, and Beta Distribution Models

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.236-241
    • /
    • 2016
  • The common ice plant (Mesembryanthemum crystallinum L.) has some medicinal uses and recommended plant in closed-type plant factory. The objective of this study was to estimate the cardinal temperatures for seed germination of the common ice plant using bilinear, parabolic, and beta distribution models. Seeds of the common ice plant were germinated in the dark in a growth chamber at four constant temperatures: 16, 20, 24, and $28^{\circ}C$. For this, four replicates of 100 seeds were placed on two layers of filter paper in a 9-cm petri dish and radicle emergence of 0.1 mm was scored as germination. The times to 50% germination were 4.3, 2.5, 2.0, and 1.8 days at 16, 20, 24, and $28^{\circ}C$, respectively, indicating that the germination of this warm-weather crop increased with temperature. Next, the time course of germination was modeled using a logistic function. For the selection of an accurate model, seeds were germinated in the dark at constant temperatures of 6, 12, 32, and $36^{\circ}C$. Germination started earlier and increased rapidly at temperatures above $20^{\circ}C$. The minimum, optimal, and maximum temperatures were estimated by regression of the inverse of time to 50% germination rate, as a function of the temperature gradient. The different functions estimated differing minimum, optimal and maximum temperatures, with 5.7, 27.7, and $36.5^{\circ}C$, respectively for the bilinear function, 13.4, 25.0, and $36.6^{\circ}C$, respectively, for the parabolic function and 7.8, 25.9, and $36.0^{\circ}C$, respectively, for the beta distribution function. The models estimated that the inverse of time to 50% germination rate was 0 at 6 and $36^{\circ}C$. The observed final germination rates at 12 and $32^{\circ}C$ were 62 and 97%, respectively. Our data show that a beta distribution function provides a useful model for estimating the cardinal temperatures for germination of seed from the common ice plant.

Plant Regeneration from Leaf and Root Cultures of Lycoris chejuensis via Bulblet Formation (제주상사화 (Lycoris chejuensis K. Tae et S. Ko) 잎 및 뿌리 절편으로부터 소자구 형성을 통한 식물체 재생안)

  • Oh, Myung-Jin;Park, Jong-Mi;Tae, Kyoung-Hwan;Liu, Jang-Ryol;Kim, Suk-Weon
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.223-227
    • /
    • 2007
  • Plant regeneration system from leaf and root segments of Lycoris chejuensis via bulblet formation was established. Surface-sterilized leaf and root segments were cultured on the B5 medium containing 2,4-D. After 12 weeks of culture onto B5 medium containing 2,4-D, white globular structures and white calluses were formed on the cut surface of the explants. The highest frequency of globular structures and calluses formation from leaf explants was 32.1% when leaf explants were cultured onto B5 medium supplemented with 1 mg/L of 2,4-D. However, the higher concentration of 2,4-D (over than 3 mg/L) resulted in decrease of the frequency. In comparison to leaf explants, root segments showed the highest frequency at a rate of 36.1% when root explants were cultured onto B5 medium supplemented with 3 mg/L of 2,4-D. These structures and calluses were sub-cultured and proliferated onto the same culture medium. Upon transfer to B5 basal medium, white globular structures were developed into bulblets and normal plantlets. After 4 weeks of incubation in the light, plantlets were successfully rooted over the frequency of approximately 90%. Rooted plantlets were successfully transferred to potting soil and acclimatized in the growth chamber. The plant regeneration system of Lycoris chejuensis established in this study, might be applied to mass proliferation, conservation of genetic resources and genetic transformation for molecular breeding.

Screening of Anti-wrinkle Resource from Herbal Medicinal Extracts and Stability Test of Its Cosmetic Products (생약재 추출물로부터 주름 개선 소재의 발굴 및 이를 이용한 화장품의 안정성 시험)

  • Cho, Eun-Ah;Cho, Eun-Hye;Choi, Sun-Ju;Park, Keun-Hyoung;Kim, So-Young;Jeong, Yoon-Joo;Ku, Chang-Sub;Ha, Byung-Jhip;Jang, Dong-Il;Chae, Hee-Jeong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.126-135
    • /
    • 2011
  • Various herbal medicinal extracts were examined for the development of cosmetic products with anti-oxidative and anti-wrinkle activity. First, total polyphenol contents and DPPH radical scavenging activities of herbal medicinal extracts were measured. Most herbal samples, except for DW extracts of Portulaca oleracea, Caesalpinia sappan, Taraxacum platycarpum, Carthamus tinctorius, and 70% EtOH extracts of Taraxacum platycarpum and Carthamus tinctorius, showed DPPH radical scavenging activity over 80% at a concentration of $400{\mu}g/m{\ell}$. SOD-like antioxidant activity of DW extracts of Syzygium aromaticum, DW extracts of Eriobtrya japonica and 70% EtOH extracts of Sophora japonica was measured as 40%, 35% and 80%, respectively at a dry matter concentration of $50{\mu}g/m{\ell}$. In elastase inhibition assay, DW extracts of Lycium chinense ($50{\mu}g/m{\ell}$) and 70% EtOH extracts of Areca catechu ($50{\mu}g/m{\ell}$) showed 50% and 40% of inhibition, respectively. At a concentration of $1.250{\mu}g/m{\ell}$, DW extracts of Lycium chinense and 70% EtOH extracts of Areca catechu showed 10% and 30% of collagenase inhibition, respectively. Skin and lotion samples were prepared using the two herbal extracts of high anti-wrinkle activity: Lycium chinense extract and Areca catechu extract. The storage stability of skin and lotion containing each of the selected herbal extracts was evaluated. pH and viscosity were used as stability indicators for the stability test under different storage temperatures and freeze-thaw cycle conditions. The skin and lotion containing each of DW extract of Lycium chinense and 70% EtOH extract of Areca catechu was showed high pH and viscosity stability. The skin and lotion containing DW extracts of Lycium chinense showed relatively higher stability than the skin and lotion containing 70% EtOH extract of Areca catechu, at cycle chamber and freeze-thaw conditions. In summary, these results indicated that cosmetics containing DW extract of Lycium chinense were relatively stable, and this herbal extract could be used as a stable functional cosmetic material.

Deposition and Characterization of Antistiction Layer for Nanoimprint Lithography by VSAM (Vapor Self Assembly Monolayer) (기상 자기조립박막 법을 이용한 나노임프린트용 점착방지막 형성 및 특성평가)

  • Cha, Nam-Goo;Kim, Kyu-Chae;Park, Jin-Goo;Jung, Jun-Ho;Lee, Eung-Sug;Yoon, Neung-Goo
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • Nanoimprint lithography (NIL) is a new lithographic method that offers a sub-10nm feature size, high throughput, and low cost. One of the most serious problems of NIL is the stiction between mold and resist. The antistiction layer coating is very effective to prevent this stiction and ensure the successful NIL results. In this paper, an antistiction layer was deposited by VSAM (vapor self assembly monolayer) method on silicon samples with FOTS (perfluoroctyltrichlorosilane) as a precursor for making an antistiction layer. A specially designed LPCVD (low pressure chemical vapor deposition) was used for this experiment. All experiments were achieved after removing the humidity. First, the evaporation test of FOTS was performed for checking the evaporation temperature at low pressure. FOTS was evaporated at 5 Tow and $110^{\circ}C$. In order to evaluate the temperature effect on antistiction layer, chamber temperature was changed from 50 to $170^{\circ}C$ with 0.1ml of FOTS for 1 minute. Good hydrophobicity of all samples was shown at about $110^{\circ}$ of contact angle and under $20^{\circ}$ of hysteresis. The surface energies of all samples calculated by Lewis acid/base theory was shown to be about 15mN/m. The deposited thicknesses of all samples measured by ellipsometry were almost 1nm that was similar value of the calculated molecular length. The surface roughness of all samples was not changed after deposition but the friction force showed relatively high values and deviations deposited at under $110^{\circ}$. Also the white circles were founded in LFM images under $110^{\circ}$. High friction forces were guessed based on this irregular deposition. The optimized VSAM process for FOTS was achieved at $170^{\circ}C$, 5 Torr for 1 hour. The hot embossing process with 4 inch Si mold was successfully achieved after VSAM deposition.

Development of 3-D Stereotactic Localization System and Radiation Measurement for Stereotactic Radiosurgery (방사선수술을 위한 3차원 정위 시스템 및 방사선량 측정 시스템 개발)

  • Suh, Tae-Suk;Suh, Doug-Young;Park, Sung-Hun;Jang, Hong-Seok;Choe, Bo-Young;Yoon, Sei-Chul;Shinn, Kyung-Sub;Bahk, Yong-Whee;Kim, Il-Hwan;Kang, Wee-Sang;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The purpose of this research is to develop stereotactic localization and radiation measurement system for the efficient and precise radiosurgery. The algorithm to obtain a 3-D stereotactic coordinates of the target has been developed using a Fisher CT or angio localization. The procedure of stereotactic localization was programmed with PC computer, and consists of three steps: (1) transferring patient images into PC; (2) marking the position of target and reference points of the localizer from the patient image; (3) computing the stereotactic 3-D coordinates of target associated with position information of localizer. Coordinate transformation was quickly done on a real time base. The difference of coordinates computed from between Angio and CT localization method was within 2 mm, which could be generally accepted for the reliability of the localization system developed. We measured dose distribution in small fields of NEC 6 MVX linear accelerator using various detector; ion chamber, film, diode. Specific quantities measured include output factor, percent depth dose (PDD), tissue maximum ratio (TMR), off-axis ratio (OAR). There was small variation of measured data according to the different kinds of detectors used. The overall trends of measured beam data were similar enough to rely on our measurement. The measurement was performed with the use of hand-made spherical water phantom and film for standard arc set-up. We obtained the dose distribution as we expected. In conclusion, PC-based 3-D stereotactic localization system was developed to determine the stereotactic coordinate of the target. A convenient technique for the small field measurement was demonstrated. Those methods will be much helpful for the stereotactic radiosurgery.

  • PDF

Effects of Hyperbaric Pressure on Cellular Morphology, Proliferation and Protein Expression of Jurkat Cell

  • Oh, Eun-Ha;Oh, Sang-Nam;Im, Ho-Sub;Lee, Joo-Hyun;Kim, Jin-Young;Moon, Joo-Hee;Hong, Eun-Young;Kim, Yang-Hee;Yang, Min-Ho;Lim, Yong-Chul;Park, Sun-Young;Lee, Eun-Il;Sul, Dong-Geun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.116-123
    • /
    • 2005
  • The application of high pressure on cellular morphology, proliferation and protein expression of Jurkat cells (human T lymphocyte cell line) has been extensively investigated. In the present study, we manufactured a novel pressure chamber that modulates 5% $CO_{2}$, temperature and pressure (up to 3 ATA). Jurkat cells was incubated 2 ATA pressure and analyzed cellular morphology and growth using an electron microscopy and MTT assay. The cells showed the morphological changes in the cell surface, which appeared to cause a severe damage in cell membrane. The growth rate of the cells under 2 ATA pressure decreased as cultured time got increased. Furthermore, a long term exposure of high pressure on Jurkat cells may act as one of the important cellular stresses that leads to inducing cell death. Cellular proteomes were separated by 2-dimensional electrophoresis with pH 3-10 ranges of IPG Dry strips. And many proteins showed significant up-and-down expressions with hyperbaric pressure. Out of all, 10 spots were identified significantly using matrix-assisted laser desorption/ionization-time of fight (MALDI-TOF) mass spectrometry. We and found that 9 protein expressions were decreased and one protein, heat shock protein HSP 60, was increased in Jurkat cells under 2 ATA. Identified proteins were related to lipid metabolism and signal transduction.

A Study on the Soil Respiration in a Quercus acutissima Forest (상수리나무림의 토양호흡에 관한 연구)

  • Lee, Yun-Yeong;Mun, Hyeong-Tae
    • The Korean Journal of Ecology
    • /
    • v.24 no.3
    • /
    • pp.141-147
    • /
    • 2001
  • Soil respiration and some environmental factors which affect soil respiration were studied in an oak forest, Kongju, Korea. Soil respiration was measured at midday of the 15th and 30th day at every month in control(Con), artificial forest gap (Gap) and litter removed area (Lr) with portable CO₂ Analyzer equipped soil respiration chamber. In July, maximum soil respiration in Con, Cap and Lr was 15.6, 11.2 and 7.7 CO₂μmol·m/sup -2/·s/sup -1/, respectively. Respiration in Gap and Lr decreased by 28.6% and 50.6%, respectively, compared with that in Con. Annual amount of soil CO₂ evolution from Con, Gap and Lr was 6.86, 5.84, 3.81 kg·m/sup -2/·yr/sup -1/, respectively. Annual amount of CO₂ evolution in Gap and Lr decreased by 14.8% and 44.5%, respectively, compared with that in Con. Soil respiration rates exponentially increased with temperature. Temperature of soil surface and at 5 cm depth was strongly related to soil respiration rates in Con (r₂=0.87, 0.93), Gap (r₂=0.81, 0.88) and Lr (r/sub 2/=0.89).

  • PDF