• Title/Summary/Keyword: Sub-50nm

Search Result 315, Processing Time 0.027 seconds

Transmission Grating Formation in High Refractive-index Amorphous Thin Films Using Focused-Ion-Beam Lithography (접속이온빔 리소그라피를 이용한 고굴절 비정질 박막 투과 격자 형성)

  • Shin, Kyung;Kim, Jin-Woo;Park, Jeong-Il;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bay
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.6-10
    • /
    • 2001
  • In this study, we investigated the optical properties of sub-wavelength a-Si thin film transmission gratings, especially the polarization effect, the phase difference and the birefringence by using linearly polarized He-Ne laser beam (632.8nm). The a-Si transmission grating of the thickness $of < 0.1 \mum$ with four-type period($\Lambda = 0.4 \mum and 0.6 \mum$ for sub-wavelength and $\Lambda = 1.0 \mum and 1.4 \mum$ for above-wavelength) on quartz substrates have been fabricated using 50 KeV Ga+ Focused-Ion-Beam(FIB) Milling and $CF_4$Reactive-Ion-Etching(RIE) method. Finally, we obtained the trating array of a-Si thin film with a period $0.4 \mum, 0.6 \mum, 1.0 \mum, 1.4 \mum$ which have nearly equal finger spacing and width, sucessfully. Especially, for gratings with $\Lambda = 0.6 \mum(linewidth=0.25 \mum, linespace=0.35\mum), the \etamax at \theta_в=17.0^{\circ}$ is estimated to be 96%. As the results, we believe that the sub-wavelength grating arrayed a-Si thin film has the applicability as the optical device and components.

  • PDF

Rapid Determination of Ginsenosides Rb1, Rf, and Rg1 in Korean Ginseng Using HPLC (HPLC를 이용한 고려인삼 중 진세노사이드 Rb1, Rf 및 Rg1의 신속분석 방법 개발)

  • Hong, Hee-Do;Choi, Sang-Yoon;Kim, Young-Chan;Lee, Young-Chul;Cho, Chang-Won
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.8-12
    • /
    • 2009
  • A simple gradient HPLC method for rapid determination of major ginsenosides ($Rg_1$ and $Rb_1$) and unique ginsenoside (Rf) of Korean ginseng (Panax ginseng C.A. Meyer) was developed. Within 50min, three ginsenosides have been separated and identified on $\mu$-Bondapak $C_{18}$ column ($3.9{\times}300\;mm$, $10{\mu}m$) with gradient elution using water and acetonitrile as a mobile phase. The method was validated in terms of linearity, accuracy, and precision. The correlation coefficients ($r^2$) for calibration curves of ginsenosides were over 0.9997. The developed HPLC method was successfully applied to the analysis of ginseng samples and the recoveries of ginsenosides were in the range of $101.1{\sim}115%$ with RSD<3.2%. The developed method could be used for rapid evaluation of the ginsenosides $Rg_1$, $Rb_1$, and Rf.

Photoelectrochemical Properties of Gallium Nitride (GaN) Photoelectrode Using Cobalt-phosphate (Co-pi) as Oxygen Evolution Catalyst (산소발생용 Cobalt-phosphate (Co-pi) 촉매를 이용한 Gallium Nitride (GaN) 광전극의 광전기화학적 특성)

  • Seong, Chaewon;Bae, Hyojung;Burungale, Vishal Vilas;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • In the photoelectrochemical (PEC) water splitting, GaN is one of the most promising photoanode materials due to high stability in electrolytes and adjustable energy band position. However, the application of GaN is limited because of low efficiency. To improve solar to hydrogen conversion efficiency, we introduce a Cobalt Phosphate (Co-pi) catalyst by photo-electrodeposition. The Co-pi deposition GaN were characterized by SEM, EDS, and XPS, respectively, which illustrated that Co-pi was successfully decorated on the surface of GaN. PEC measurement showed that photocurrent density of GaN was 0.5 mA/㎠ and that of Co-pi deposited GaN was 0.75 mA/㎠. Impedance and Mott-Schottky measurements were performed, and as a result of the measurement, polarization resistance (Rp) and increased donor concentration (ND) values decreased from 50.35 Ω to 34.16 Ω were confirmed. As a result of analyzing the surface components before and after the water decomposition, it was confirmed that the Co-pi catalyst is stable because Co-pi remains even after the water decomposition. Through this, it was confirmed that Co-pi is effective as a catalyst for improving GaN efficiency, and when applied as a catalyst to other photoelectrodes, it is considered that the efficiency of the PEC system can be improved.

Characteristics of Pt thin films on WC for glass lens molding (유리렌즈 성형용 초경합금의 Pt 박막의 특성에 관한 연구)

  • Park, Soon-Sub;Lee, Ki-Yung;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.62-67
    • /
    • 2009
  • Pt thin films on Cr or Ti interlayer were deposited onto a tungsten carbide(WC) substrate by the ion beam assisted DC magnetron sputtering. The various atomic percent of Cr and Ti underneath of the Pt films were prepared to examine the total thin film characteristics. The microstructure and surface analysis of the specimen were conducted by using the SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Pt thin film also were examined. The interlayer of pure Ti was formed with 40 nm thickness while that of pure Cr was done with 50 nm as standard reference. The growth rate of either Cr or Ti thin film was almost same under the same deposition conditions. The SEM images showed that anisotropic grain of Pt thin films consisting of dense columnar structures irrespectively grew from the different target compositions. The values of hardness and adhesion strength of Cr/Pt thin film coated on a WC substrate were higher than those of Ti/Pt thin film.

  • PDF

Photoluminescence analysis of patterned light emitting diode structure

  • Hong, Eun-Ju;Byeon, Gyeong-Jae;Park, Hyeong-Won;Lee, Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.21.2-21.2
    • /
    • 2009
  • 발광다이오드는 에너지 변환 효율이 높고 친환경적인 장점으로 인하여 차세대 조명용 광원으로 각광받고 있다. 하지만 현재 발광다이오드는 낮은 광추출효율로 인하여 미래의 수요를 충족시킬 수 있을 만큼 충분한 성능의 효율을 나타내지 못하고 있다. 발광다이오드의 낮은 광추출효율은 반도체소재와 외부 공기와의 큰 굴절률 차이로 인하여 발생하는 전반사 현상에 기인한 것으로 이 문제를 해결하기 위하여 발광다이오드 소자의 발광면 및 기판을 텍스처링하는 방법이 중요하게 인식되고 있다. 하지만 현재까지 패턴의 구조에 따른 광추출 특성을 분석한 연구는 미진한 상황이다. 본 연구에서는 임프린팅 및 건식식각 공정을 이용하여 다양한 구조의 나노 및 micron 급 패턴을 발광다이오드의 p-GaN층에 형성하였다. 발광다이오드 기판 위에 하드마스크로 사용하기 위한 SiO2를 50nm 증착한 후 그 위에 UV 임프린팅 공정을 진행하여 폴리머 패턴을 형성시켰다. 임프린팅 공정으로 형성된 폴리머 패턴을 CF4CHF3 플라즈마를 이용하여 SiO2를 건식식각하였고, 이후에 SiCl4와 Ar 플라즈마를 이용한 ICP 식각 공정을 진행하여 p-GaN층을 100nm 식각하였다. 마지막으로 BOE를 이용한 습식식각 공정으로 p-GaN층에 남아있는 SiO2층을 제거하여 p-GaN층에 sub-micron에서 micron급의 홀 패턴을 형성하였다. Photoluminescence(PL) 측정을 통해서 발광다이오드 소자에 형성된 패턴의 구조에 따른 광추출 특성을 분석하였다.

  • PDF

Characteristics of NOx Reduction and NH3 Slip in SNCR Using Pipe Nozzle for the Application of Hybrid SNCR/SCR Process (Hybrid SNCR/SCR 탈질공정에서 SNCR의 관통노즐에 의한 NOx 저감 및 NH3 Slip 특성)

  • Hyun, Ju Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.111-118
    • /
    • 2009
  • A hybrid SNCR/SCR plant was designed and manufactured, and experimented on the SNCR process in the first step to investigate the optimum operation conditions of SNCR, with the equivalence ratio of the reducing agent(NSR, 0.5~5.0), reaction temperature($850{\sim}1,100^{\circ}C$), nozzle type(wall nozzle, pipe nozzle), and nozzle position as variables. In the case of wall nozzles, the NOx reduction efficiency rapidly increased to 87% at 2.5 NSR and slowed down after this. Compared to the upward spray from the pipe nozzle, wall nozzles have narrower range of applicable reaction temperature. In the case of pipe nozzles, it rapidly increased to 77% at 1.5 NSR. But the pipe nozzle downward had no NOx reduction efficiency; on the contrary, NOx increased. When the reducing agent was sprayed upward from a pipe nozzle, the NOx reduction efficiency was 50~75% in the range of 0.5~1.5 NSR, and the NOx reduction efficiency was constant without fluctuations even in the change of reaction temperature from 890 to $1,000^{\circ}C$. When 5% urea solution was sprayed upward from the pipe nozzle, 200 ppm NOx decreased to approximately 60 ppm at 1.2 NSR, and the non-reacted $NH_3$ was 50~100 ppm. In this condition, we expect over 90% NOx reduction efficiency without additional supply of $NH_3$ to SCR at the back of SNCR.

Gas Sensing Behaviors of SnO2:Cu Nanostructures for CH4, CH3CH2CH3 Gas (SnO2:Cu 나노 구조물의 CH4, CH3CH2CH3 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.974-978
    • /
    • 2012
  • The effect of Cu coating on the sensing properties of nano $SnO_2:Cu$ based sensors for the $CH_4$, $CH_3CH_2CH_3$ gas was studied. This work was focussed on investigating the change of sensitivity of nano $SnO_2:Cu$ based sensors for $CH_4$, $CH_3CH_2CH_3$ gas by Cu coating. Nano sized $SnO_2$ powders were prepared by solution reduction method using stannous chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_2$) and NaOH and subsequent heat treatment. XRD patterns showed that nano $SnO_2$ powders with rutile structure were grown with (110), (101), (211) dominant peak. The particle size of nano $SnO_2:Cu$ powders at 8 wt% Cu was about 50 nm. $SnO_2$ particles were found to contain many pores, according to SEM analysis. The sensitivity of nano $SnO_2:Cu$ based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The sensitivity for both $CH_4$ and $CH_3CH_2CH_3$ gases was improved by Cu coating on the nano $SnO_2$ surface. The response time and recovery time of the $SnO_2:Cu$ gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 18~20 seconds, and 13~15 seconds, respectively.

Hardware Design of SURF-based Feature extraction and description for Object Tracking (객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계)

  • Do, Yong-Sig;Jeong, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.83-93
    • /
    • 2013
  • Recently, the SURF algorithm, which is conjugated for object tracking system as part of many computer vision applications, is a well-known scale- and rotation-invariant feature detection algorithm. The SURF, due to its high computational complexity, there is essential to develop a hardware accelerator in order to be used on an IP in embedded environment. However, the SURF requires a huge local memory, causing many problems that increase the chip size and decrease the value of IP in ASIC and SoC system design. In this paper, we proposed a way to design a SURF algorithm in hardware with greatly reduced local memory by partitioning the algorithms into several Sub-IPs using external memory and a DMA. To justify validity of the proposed method, we developed an example of simplified object tracking algorithm. The execution speed of the hardware IP was about 31 frame/sec, the logic size was about 74Kgate in the 30nm technology with 81Kbytes local memory in the embedded system platform consisting of ARM Cortex-M0 processor, AMBA bus(AHB-lite and APB), DMA and a SDRAM controller. Hence, it can be used to the hardware IP of SoC Chip. If the image processing algorithm akin to SURF is applied to the method proposed in this paper, it is expected that it can implement an efficient hardware design for target application.

Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area (소오스/드레인 영역의 도펀트 양의 증가에 따른 코발트실리사이드의 물성변화)

  • Cheong, Seong-Hwee;Song, Oh-Sung;Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.43-47
    • /
    • 2003
  • As and BF$_2$dopants are implanted for the formation of source/drain with dose of 1${\times}$10$^{15}$ ions/$\textrm{cm}^2$∼5${\times}$10$^{15}$ ions/$\textrm{cm}^2$ then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 $\mu\textrm{m}$ CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{V}$ , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{+}$ . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in $CoSi_2$$n^{+}$ , while little variation was observed in $CoSi_2$$p^{+}$ . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of $CoSi_2$$n^{+}$ / and $CoSi_2$/$p^{+}$, which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13$\mu\textrm{m}$ process.

Experimental Study of Interfacial Friction in NaBH4 Solution in Microchannel Dehydrogenation Reactor (마이크로채널 탈수소 화학반응기에서 수소화붕소나트륨 수용액의 계면마찰에 대한 실험연구)

  • Choi, Seok Hyun;Hwang, Sueng Sik;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2014
  • Sodium borohydride ($NaBH_4$) is considered as a secure metal hydride for hydrogen storage and supply. In this study, the interfacial friction of two-phase flow in the dehydrogenation of aqueous $NaBH_4$ solution in a microchannel with a hydraulic diameter of $461{\mu}m$ is investigated for designing a dehydrogenation chemical reactor flow passage. Because hydrogen gas is generated by the hydrolysis of $NaBH_4$ in the presence of a ruthenium catalyst, two different flow phases (aqueous $NaBH_4$ solution and hydrogen gas) exist in the channel. For experimental studies, a microchannel was fabricated on a silicon wafer substrate, and 100-nm ruthenium catalyst was deposited on three sides of the channel surface. A bubbly flow pattern was observed. The experimental results indicate that the two-phase multiplier increases linearly with the void fraction, which depends on the initial concentration, reaction rate, and flow residence time.