• Title/Summary/Keyword: Sub grid

Search Result 290, Processing Time 0.023 seconds

Design and Its Applications of a Hypercube Grid Quorum for Distributed Pub/Sub Architectures in IoTs (사물인터넷에서 분산 발행/구독 구조를 위한 하이퍼큐브 격자 쿼럼의 설계 및 응용)

  • Bae, Ihnhan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1075-1084
    • /
    • 2022
  • Internet of Things(IoT) has become a key available technology for efficiently implementing device to device(D2D) services in various domains such as smart home, healthcare, smart city, agriculture, energy, logistics, and transportation. A lightweight publish/subscribe(Pub/Sub) messaging protocol not only establishes data dissemination pattern but also supports connectivity between IoT devices and their applications. Also, a Pub/Sub broker is deployed to facilitate data exchange among IoT devices. A scalable edge-based publish/subscribe (Pub/Sub) broker overlay networks support latency-sensitive IoT applications. In this paper, we design a hypercube grid quorum(HGQ) for distributed Pub/Sub systems based IoT applications. In designing HGQ, the network of hypercube structures suitable for the publish/subscribe model is built in the edge layer, and the proposed HGQ is designed by embedding a mesh overlay network in the hypercube. As their applications, we propose an HGQ-based mechansim for dissemination of the data of sensors or the message/event of IoT devices in IoT environments. The performance of HGQ is evaluated by analytical models. As the results, the latency and load balancing of applications based on the distributed Pub/Sub system using HGQ are improved.

A Study on the Evaluation of Interpolation Methods in PIV (PIV에서의 보간기법의 평가에 관한 연구)

  • 최장운;조대한;최민선;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.90-100
    • /
    • 1996
  • To maintain high spacial accuracy and rapid CPU time in interpolating data from grid to random position or inversely in PIV, proposed many technuques are compared and discussed mainly in terms of interpolating error and computing time. And artificial PIV atmosphere data is furnished by CFD result. First, for interpolation from grid to random position, multiquadric method gives the highest accuracy with the longest CPU time and Taylor series expansion methods give reasonable accuracy with less calculating load. Secondly, the sub-pixel resolution analysis in estimating the coordinates of the maximum correlation coefficients essential in the grey level correlation PIV reveal that 8-neighbours 2nd-order least square interpolation gives utmost accuracy in terms of the real flow conditions.

  • PDF

A Study on the Evaluation of Interpolation Methods in PIV (PIV에서의 보간기법의 평가에 관한 연구)

  • Choi, J.W;Cho, D.H;Choi, M.S;Lee, Y.H
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.412-412
    • /
    • 1996
  • To maintain high spacial accuracy and rapid CPU time in interpolating data from grid to random position or inversely in PIV, proposed many technuques are compared and discussed mainly in terms of interpolating error and computing time. And artificial PIV atmosphere data is furnished by CFD result. First, for interpolation from grid to random position, multiquadric method gives the highest accuracy with the longest CPU time and Taylor series expansion methods give reasonable accuracy with less calculating load. Secondly, the sub-pixel resolution analysis in estimating the coordinates of the maximum correlation coefficients essential in the grey level correlation PIV reveal that 8-neighbours 2nd-order least square interpolation gives utmost accuracy in terms of the real flow conditions.

Sub-grid study of scaling effects to evapotranspiration of heterogeneous forest landscape at the Volga source area in Russia

  • Oltchev, A.;G.Gravenhorst;A.P.Tishenko;Joo, Y.T.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.151-152
    • /
    • 2001
  • A common problem of the model simulations of the land surface - atmosphere interaction is to choose the appropriate spatial scale and resolution at which the simulations are to be performed. The accuracy of energy and water exchange predictions between the land surface and the atmosphere in regional and global scale atmospheric models is mainly influenced by: model simplifications applied to describe the spatial heterogeneity of land surface properties within individual grid cells; ignoring the variability of sub-grid properties (e.g. relief, vegetation, soils), and; lacks of necessary input meteorological and biophysical data.(omitted)

  • PDF

DEVELOPMENT OF A THREE-DIMENSIONAL MULTI-BLOCK STRUCTURED GRID DEFORMATION CODE FOR COMPLEX CONFIGURATIONS (복잡한 형상에 관한 삼차원 변형 Multi-Block 정렬격자 프로그램 개발)

  • Hoang, A.D.;Lee, Y.M.;Jung, S.K.;Nguyen, A.T.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.28-37
    • /
    • 2007
  • In this study, a multi-block structured grid deformation code based on a hybrid of a transfinite interpolation algorithm and spring analogy was developed. The configuration was modeled by a Bezier surface. A combination of the spring analogy for block vertices and the transfinite interpolation for interior grid points helps to increase the robustness and makes it suitable for distributed computing. An elliptic smoothing operator was applied to the block faces with sub-faces in order to maintain the grid smoothness and skewness. The capability of this code was demonstrated on a range of simple and complex configurations including an airfoil and a wing-body configuration.

The Electrical Characterization and Relaxation Behavior of Ag(Ta0.8Nb0.2)O3 Ceramics

  • Kim, Young-Sung;Kim, Jae-Chul;Jeong, Tae-Hoon;Nam, Sung-Pill;Lee, Seung-Hwan;Kim, Hong-Ki;Lee, Ku-Tak
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.100-102
    • /
    • 2014
  • $Ag(Ta,Nb)O_3$ materials have a perovskite structure with a low loss tangent. These materials have been widely researched for their applications as high-frequency, passive components. Also, $Ag(Ta,Nb)O_3$ materials have weak frequency dispersion with high dielectric permittivity which gives them enormous potential for use in electronic components, including the filters, and embedded capacitors. Therefore, our research will discuss the structural and electrical relaxation properties of $Ag(Ta_{0.8}Nb_{0.2})O_3$ ceramics for device applications. We will investigate using X-ray diffraction to understand their structural properties and will analyze voltage dependent leakage current and timedependent relaxation behavior to understand their material properties.

Front Surface Grid Design for High Efficiency Solar Cells

  • Gangopadhyay Utpal;Kim, Kyung-Hae;Basu Prabir Kanti;Dhungel Suresh Kumar;Jung, Sung-Wook;Yia, Jun-Sin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.78-84
    • /
    • 2005
  • Standard crystalline solar cells are generally fabricated with the front grid pattern of silver paste contact. We have reported a detailed theoretical analysis of the proposed segmented cross grid line pattern in this paper. This work was carried out for the optimization of spacing and width of grid finger, main busbar and sub-busbar. The overall electrical and optical losses due to front contact were brought down to $10\%$ or even less as compared to the usual loss of $15\%$ or more in the conventional screen printed silver paste technology by choosing proper grid pattern and optimizing the grid parameters. The total normalized power loss for segmented mesh grid with plated metal contact was also observed and the total power loss could be brought down to $10.04\%$ unlike $11.57\%$ in the case of continuous grid and plated contact. This paper is able to outline the limitations of conventional screen printed contact.

Analysis of Added Resistance in Short Waves (단파장 영역에서의 부가저항 해석)

  • Yang, Kyung-Kyu;Seo, Min-Guk;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.338-348
    • /
    • 2015
  • In this study, the added resistance of ships in short waves is systematically studied by using two different numerical methods - Rankine panel method and Cartesian grid method – and existing asymptotic and empirical formulae. Analysis of added resistance in short waves has been preconceived as a shortcoming of numerical computation. This study aims to observe such preconception by comparing the computational results, particularly based on two representative three-dimensional methods, and with the existing formulae and experimental data. In the Rankine panel method, a near-field method based on direct pressure integration is adopted. In the Cartesian grid method, the wave-body interaction problem is considered as a multiphase problem, and volume fraction functions are defined in order to identify each phase in a Cartesian grid. The computational results of added resistance in short waves using the two methods are systematically compared with experimental data for several ship models, including S175 containership, KVLCC2 and Series 60 hulls (CB = 0.7, 0.8). The present study includes the comparison with the established asymptotic and empirical formulae in short waves.

Versatile UPQC Control System with a Modified Repetitive Controller under Nonlinear and Unbalanced Loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1093-1104
    • /
    • 2015
  • A standard repetitive controller (RC) is theoretically able to replace a bank of resonant controllers in harmonic signals tracking applications. However, the traditional RC has some drawbacks such as a poor dynamic response and a complex structure to compensate grid frequency deviations for an effective unified power quality conditioner (UPQC) control scheme. In order to solve these problems, an improved RC with an outstanding dynamic response and a simplified grid frequency adaptive scheme is proposed for UPQC control systems in this paper. The control strategy developed for the UPQC has delay time, i.e., one-sixth of a fundamental period (Tp/6), repetitive controllers. As a result, the UPQC system can provide a fast dynamic response along with good compensation performance under both nonlinear and unbalanced loads. Furthermore, to guarantee the excellent performance of the UPQC under grid frequency deviations, a grid frequency adaptive scheme was developed for the RC using a simple first order Padé's approximation. When compared with other approaches, the proposed control method is simpler in structure and requires little computing time. Moreover, the entire control strategy can be easily implemented with a low-cost DSP. The effectiveness of the proposed control method is verified through various experimental tests.

LES study of flow field and aerodynamic forces on a circular cylinder at Re=3900 with focus on grid resolution

  • Hongmiao Jing;Jitao Zhang;Qingkuan Liu;Yangxue Wang
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.175-200
    • /
    • 2023
  • The large eddy simulation (LES) of the flow around a circular cylinder is not only affected by the sub-grid scale (SGS) model but also by the grid resolution of the computational domain. To study the influence of different grids on the LES results, the LES simulations of the flow around a circular cylinder with different grids at Reynolds number (Re) = 3900 was performed. A circular computational domain with different radial growth rates and circumferential and spanwise grid numbers was adopted for the simulations. Meanwhile, the aerodynamic forces, wind pressure coefficients, mean and instantaneous flow fields, and the effect of grid resolution on them were comprehensively analyzed. The results indicate that the lift coefficient, wind pressure coefficient, and recirculation length are significantly affected by the radial growth rate of the grid and the circumferential grid number. The spanwise grid number has a significant influence on the three-dimensionality of the flow and plays an important role in velocity fluctuations in the wake region. Nevertheless, the aerodynamic coefficients and recirculation length are not sufficiently sensitive to the grid number in the spanwise direction. By comparing the results, it can be concluded that suitable and reliable LES results can be obtained when the radial growth rate is 1.03 or 1.05, the circumferential grid number is 160, 200, or 240, and the spanwise grid number is 64. A radial growth rate 1.05, circumferential grid number 160, and spanwise grid number 64 are recommended to reduce the grid amount and further improve the efficiency.