Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.2.100

The Electrical Characterization and Relaxation Behavior of Ag(Ta0.8Nb0.2)O3 Ceramics  

Kim, Young-Sung (Department of Electrical Engineering, Soong-Sil University)
Kim, Jae-Chul (Department of Electrical Engineering, Soong-Sil University)
Jeong, Tae-Hoon (Department of Smart Grid Research, Korea Electrotechnology Research Institute)
Nam, Sung-Pill (Department of Smart Grid Research, Korea Electrotechnology Research Institute)
Lee, Seung-Hwan (Department of Materials Engineering, Kwang-Woon University)
Kim, Hong-Ki (Department of Materials Engineering, Kwang-Woon University)
Lee, Ku-Tak (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.2, 2014 , pp. 100-102 More about this Journal
Abstract
$Ag(Ta,Nb)O_3$ materials have a perovskite structure with a low loss tangent. These materials have been widely researched for their applications as high-frequency, passive components. Also, $Ag(Ta,Nb)O_3$ materials have weak frequency dispersion with high dielectric permittivity which gives them enormous potential for use in electronic components, including the filters, and embedded capacitors. Therefore, our research will discuss the structural and electrical relaxation properties of $Ag(Ta_{0.8}Nb_{0.2})O_3$ ceramics for device applications. We will investigate using X-ray diffraction to understand their structural properties and will analyze voltage dependent leakage current and timedependent relaxation behavior to understand their material properties.
Keywords
$Ag(Ta,Nb)O_3$ ceramics; XRD; Relaxation current;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. J. Bae, J. Koo, and J. P. Hong, J. Elect. Engin. Tech. 1, 120 (2006).   DOI
2 I. S. Kim, J. S. Song, S. J. Jeong, S. H. Jeon, J. K. Chung, and W. J. Kim, J. Elect. Engin. Tech. 2, 391 (2007).   DOI
3 C. I. Lee, K. T. Kim, and C. I. Kim, Trans. Electr. Electron. Mater. 7, 67 (2001).
4 R. Ratheesh, H. Sreemoolanadhan, and MT. Sebastian, J. Solid State Chem. 131, 2 (1997) [DOI: http://dx.doi.org/10.1006/jssc.1996.7240].   DOI   ScienceOn
5 J. H. Koh, B. M. Moon and A. Grishin, Integ. Ferro. 39, 1361 (2001) [DOI: http://dx.doi.org/10.1080/10584580108011965]   DOI
6 A. Kania, Phase Transit. 3, 131 (1983) [DOI: http://dx.doi.org/10.1080/01411598308244116].   DOI   ScienceOn
7 X. Hu, M. Valant and D. Suvorov, J. Appl. Phys. 99, 12410 (2006) [DOI: http://dx.doi.org/10.1063/1.2209552].   DOI
8 L. Li, J. Zhao, P. Zhang, R. Guo and H.Wang, J. Rare Earths 25, 163 (2007) [DOI: http://dx.doi.org/10.1016/S1002-0721(07)60548-1].   DOI
9 XY. Guo, N. Zhu, M. Xiao and XW. Wu, J. Am. Ceram. Soc. 90, 2467 (2007) [DOI: http://dx.doi.org/10.1111/j.1551-2916.2007.01802.x].   DOI
10 LX. Li, XW. Wu and YM. Wang, J. Electroceram. 11, 163 (2003) [DOI: http://dx.doi.org/10.1023/B:JECR.0000026370.24972.6a].   DOI
11 L. Cao, L. Li, P. Zhang, H. Wu and X. Wei. J. Alloys Compd. 487, 527 (2009) [DOI: http://dx.doi.org/10.1016/j.jallcom.2009.07.178].   DOI
12 K. T. Lee, S.W Yun and J.H. Koh, J. Kor. Phy. Soc. 59, 2478 (2011) [DOI: http://dx.doi.org/10.3938/jkps.59.2478].   DOI
13 E. K. Akdogan, J. Bellotti, and A. Safari, Inst. Electr. Electron. Eng. 1, 191 (2000) [DOI: http://dx.doi.org/10.1109/ISAF.2000.941539].   DOI
14 T. H. Yeom, K. T. Han, S. H. Choh, and K. S. Hong, J. Korean Phys. Soc. 28, 113 (1995) [DOI: http://dx.doi.org/10.3938/jkps.28.113].