• Title/Summary/Keyword: Sub System

Search Result 8,079, Processing Time 0.034 seconds

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

Storage Media for the Vehicle Heat Storage System by Using Ba(OH)2·8H2O System (Ba(OH)2·8H2O계 자동차 축열시스템의 저장매체)

  • Kim, H.C.;Song, Y.H.;Lee, C.T.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.722-728
    • /
    • 1997
  • This study was investigated to find storage material of thermal energy storage system for a vehicle with the basic material of $Ba(OH)_2{\cdot}8H_2O$ and to test a feasibility of it. Experiment was investigated usability for long time and state change and thermal property after cycle with $Ba(OH)_2{\cdot}8H_2O$ and misxture doping additive to it. The result of this research indicated the mixture adding $Sr(OH)_2{\cdot}8H_2O$ to $Ba(OH)_2{\cdot}8H_2O$ have high feasibility as storage material for thermal energy storage system. This mixture did not exhibit the state change during 1300 cycles and the rate of decrease of heat realese energy was about 2%, relatively low value.

  • PDF

Frequency Reuse and Sub-cell Coverage Determination Scheme for Improved Throughput in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 개선을 위한 자원 재사용과 커버리지 설정기법)

  • Hyun, Myung-Reun;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.414-420
    • /
    • 2009
  • In this paper, we investigate throughput performance of OFDMA-based relay systems according to the "sub-cell coverage configuration" of the base station (RS) and the relay station (RS). RS is exploited for improved quality of the received signal with a tradeoff of additional radio resource consumption which may result in degradation of the throughput performance of the system. Therefore, "radio resource reuse" may be necessary for high performance in relay systems. However, it also causes system performance degradation since resource reuse between RSs incurs channel interference. Therefore, effective resource reuse also should be considered for "high throughput coverage configuration" when relays are employed. We relate the resource reuse patterns of neighboring RSs to sub-cell coverage configuration. We determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the mobile station (MS) from the BS and RS, respectively. Simulations illustrate the throughput performance as the function of SINR ratio, and it has different optimal point depending on the resource reuse patterns. Therefore, the "resource reuse pattern" and the "effective sub-cell coverage configuration" should be considered together for the high throughput performance of the relay system.

Analysis of Recent Trends of Particulate Matter Observed in Busan - Comparative Study on Busan vs. Seoul Metropolitan Area (I) (부산지역 미세먼지 최근 경향 분석 - 수도권과 비교연구 (I))

  • Kim, Jong-Min;Jo, Yu-Jin;Yang, Geum-Hee;Heo, Gookyoung;Kim, Cheol-Hee
    • Journal of Environmental Science International
    • /
    • v.29 no.2
    • /
    • pp.177-189
    • /
    • 2020
  • We analyzed the recent characteristics of Particulate Matter (PM) including PM10 (PM with diameter of less than 10 ㎛) and PM2.5 (PM with diameter of less than 2.5 ㎛) observed in Busan metropolitan area, and compared them with those measured in Seoul metropolitan area. This analysis includes the monthly, seasonal, and annual variations and differences, in emissions and chemical compositions observed in both Busan and Seoul areas. Synoptic meteorological conditions were investigated at the time when high PM concentrations occurred in each of the two areas. The results showed clearly decreasing trends of annual mean concentrations with strong seasonal variations: lower in summer and higher in winter in both areas. In comparison with Seoul, the seasonal variation in Busan demonstrated relatively lower, but showed greater summer fluctuations than in Seoul metropolitan area. This is implying the importance of secondary generation of PM in summer via active photochemical reaction in Busan area. In high concentration days, Busan's chemical composition of sulfate was higher than that of nitrate in summer, whereas nitrate was higher than sulfate in Seoul. The ratios of NO3- to SO42-(N/S ratio) showed lower in Busan approximately by a factor of 1/2(half of N/S ratio) in Busan compared with that in Seoul. Others such as synoptic characteristics and emission differences were also discussed in this study.

Improving the seismic behavior of diagonal braces by developing a new combined slit damper and shape memory alloys

  • Vafadar, Farzad;Broujerdian, Vahid;Ghamari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.107-120
    • /
    • 2022
  • The bracing members capable of active control against seismic loads to reduce earthquake damage have been widely utilized in construction projects. Effectively reducing the structural damage caused by earthquake events, bracing systems equipped with retrofitting damper devices, which take advantage of the energy dissipation and impact absorption, have been widely used in practical construction sites. Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. In this research, a new system in diagonal braces with slit damper combined with SMA is investigated. The diagonal element under the effect of tensile and compressive force turns to shear force in the slit damper and creates tension in the SMA. Therefore, by creating shear forces in the damper, it leads to yield and increases the energy absorption capacity of the system. The purpose of using SMA, in addition to increasing the stiffness and strength of the system, is to create reversibility for the system. According to the results, the highest capacity is related to the case where the ratio of the width of the middle section to the width of the end section (b1/b) is 1.0 and the ratio of the height of the middle part to the total height of the damper (h1/h) is 0.1. This is mainly because in this case, the damper section has the highest cross-section. In contrast, the lowest capacity is related to the case where b1/b=0.1 and the ratio h1/h=0.8.

Screening of SrO-B2O3-P2O5 Ternary System by Combinatorial Chemistry and QSAR (조합화학과 QSAR를 이용한 SrO-B2O3-P2O5 3원계 청색형광체 개발)

  • Yoo, Jeong-Gon;Back, Jong-Ho;Cho, Sang-Ho;Sohn, Kee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.391-398
    • /
    • 2005
  • It is known that $BaMgAl_{10}O_{17}:Eu^{2+}(BAM)$ phosphors currently used have a serious thermal degradation problem. We screened $SrO-B_2O_3-P_2O_5$ system by a solution combinatorial chemistry technique in an attempt to search for a thermally stable blue phosphor for PDPs. A Quantitative Structure Activity Relationship (QSAR) was also obtained using an artificial neural network trained by the result fiom the combinatorial screening. As a result, we proposed a promising composition range in the $SrO-B_2O_3-P_2O_5$ ternary library. These compositions crystallized into a single major phase, $Sr_6BP_5O_{20}:Eu^{2+}$. The structure of $Sr_6BP_5O_{20}:Eu^{2+}$ was clearly determined by ab initio calculation. The luminescent efficiency of $Sr_6BP_5O_{20}:Eu^{2+}$ was 2.8 times of BAM at Vacuum Ultra Violet (VUV) excitation. The thermal stability was also good but the CIE color chromaticity was slightly poor.

Controlling the Diameter Size of Carbon Nanofilaments by the Cyclic on/off Modulation of C2H2/H2/SF6 Flow in a Thermal Chemical Vapor Deposition System (C2H2/H2/SF6 기체들의 싸이클릭 유량 변조를 통한 탄소 나노 필라멘트 직경크기 조절)

  • Kim, Kwang-Duk;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.481-487
    • /
    • 2009
  • To control the diameter size of the carbon nanofilaments (CNFs), SF6 was incorporated in the source gases ($C_2H_2/H_2$) during the initial deposition stage. The source gases and $SF_6$ were manipulated as the cyclic on/off modulation of $C_2H_2/H_2/SF_6$ flow in a thermal chemical vapor deposition system. The characteristics of the CNFs formation on the substrate were investigated according to the different cyclic modulation processes and the substrate temperatures. By $SF_6\;+\;H_2$ flow injection during the cycling etching interval time, the diameter size of CNFs was extremely decreased. The cause for the decrease in the diameter size of the individual CNFs by the cyclic on/off modulation process of $C_2H_2/H_2/SF_6$ flow was discussed in association with the slightly enhanced etching ability by the incorporation of $SF_6$.

A Study of Sintering Behavior and Crystallization in Li2O-Al2O3-SiO2 (LAS) Glass System by RSM (RSM 법에 의한Li2O-Al2O3-SiO2 (LAS) 유리의 소결 거동과 결정화에 대한 연구)

  • Lee, Kyu-Ho;Kim, Young-Seok;Jung, Young-Joon;Kim, Tae-Ho;Seo, Jin-Ho;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.451-456
    • /
    • 2007
  • This paper presents results and observations obtained from a study of sintering behavior and crystallization in $Li_2O-Al_2O_3-SiO_2$ (LAS) Glass by screen printing method. The variable experimental conditions were determined carefully by Thermal-Mechanical Analyzer (TMA), Differential Thermal Analyzer (DTA) for setting the optimum transparent sintering conditions in LAS glass system, $10.5Li_2O-14.7Al_2O_3-58.1SiO_2-16.7B_2O_3(wt%)$, such as glass-ceramics which usually have low crystallization temperatures. Crystallization glasses generated during sintering was observed from diffraction patterns by X-Ray Diffraction (XRD), transmittance by UV-Vis spectrometer. Finally, the optimum sintering condition of LAS glass and the relation between factors and results in several sintering conditions were given by using Response Surface Methodology (RSM). From this study, we confirmed that crystallization interrupted densification during glass powder sintering. Furthermore, we observed that main effect of factors in glass powder sintering with concurrent crystallization depended on experimental conditions from main effects plot by MINTAB-14.

Transition Metal Oxide Multi-Layer Color Glass for Building Integrated Photovoltaic System (BIPV 시스템을 위한 전이금속 산화물 다중층 컬러 유리 구현 기술 연구)

  • Ahn, Hyeon-Sik;Gasonoo, Akpeko;Jang, Eun-Jeong;Kim, Min-Hoi;Lee, Jae-Hyun;Choi, Yoonseuk
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1128-1133
    • /
    • 2019
  • This paper proposed colored front panel glass for Building Integrated Photovoltaic (BIPV) systems using multi-layered thin films composed of transition metal oxide (TMO) layers. Molybdenum oxide (MoO3) and tungsten oxide (WO3) provided complementary and suitable materials in making effective interference of reflected light from interfaces with significant difference in refractive indices. A simple, fast, and cheap fabrication method was achieved by depositing the multi-layer films in a single thermal evaporator. Magenta colored glass with optical transmittance of more than 90% was achieved with MoO3 (60nm)/WO3(100nm) multi-layered film. This technology could play in a critical role in commercial BIPV system applications.

Application of 3-dimensional phase-diagram using FactSage in C3H8-SiCl4-H2 System (C3H8-SiCl4-H2 시스템에서 FactSage를 이용한 압력-조성-온도 3차원 상평형도의 응용)

  • Kim, Jun-Woo;Kim, Hyung-Tae;Kim, Kyung-Ja;Lee, Jong-Heun;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure(P), temperature(T) and gas composition(C) as variables in $C_3H_8-SiCl_4-H_2$ system. During the calculation, the ratio of Cl/Si and C/Si is maintained to be 4 and 1, respectively, and H/Si ratio is varied from 2.67 to 15,000. The P-T-C diagram showed very steep phase boundary between SiC+C and SiC region perpendicular to H/Si axis and also showed SiC+Si region with very large H/Si value of ~6700. The diagram can be applied not only to the prediction of the deposited phase composition but to compositional variation due to the temperature distribution in the reactor. The P-T-C diagram could provide the better understanding of chemical vapor deposition of silicon carbide.