• Title/Summary/Keyword: Sub - Element

Search Result 994, Processing Time 0.028 seconds

The Effect of Perceived Parental Abuse and Neglect and Peer Attachment on School Life Adjustment according to Children's Gender (성별에 따라 아동이 지각한 부모의 방임학대와 또래애착이 학교생활적응에 미치는 영향)

  • Kim, Hye Gum
    • Human Ecology Research
    • /
    • v.52 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • The purpose of this study was to analyze the effect of perceived parental neglect and abuse and peer attachment on school life adjustment according to children's gender. A total of 2,264 5th graders from the second Korea Child-Adolescent Panel Survey participated. The results were as follows: First, the boys had higher parental neglect and abuse scores than the girls, while the girls had higher peer attachment scores and higher school life adjustment scores than the boys. Second, every sub-element of school life adjustment was significantly negatively correlated with parental neglect and abuse regardless of the children's gender. Every sub-element of school life adjustment was significantly positively correlated with the 'communication' and 'trust' sub-elements of peer attachment regardless of the children's gender. In the case of the boys, the 'study activity' and 'peer relation' sub-elements of school life adjustment were significantly negatively correlated with the 'alienation' sub-element of peer attachment. For the girls, every sub-element of school life adjustment was significantly negatively correlated with the alienation sub-element of peer attachment. Finally, the factors of 'parental neglect and abuse', and the peer attachment sub-elements of 'communication', and 'trust' significantly predicted the boys' school life adjustment, while for girls, the significant predictors were 'parental neglect and abuse', 'communication', 'trust', and 'alienation'.

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

Element free formulation for connecting sub-domains modeled by finite elements

  • Pan, Chan-Ping;Tsai, Hsing-Chih
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.467-480
    • /
    • 2007
  • Two methods were developed for analyzing problems with two adjacent sub-domains modeled by different kinds of elements in finite element method. Each sub-domain can be defined independently without the consideration of equivalent division with common nodes used for the interface. These two methods employ an individual interface to accomplish the compatibility. The MLSA method uses the moving least square approximation which is the basic formulation for Element Free Galerkin Method to formulate the interface. The displacement field assumed by this method does not pass through nodes on the common boundary. Therefore, nodes can be chosen freely for this method. The results show that the MLSA method has better approximation than traditional methods.

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

Derivation of General Link Finite Element Equation representing Pad Shoe in Bridge under Earthquake (지진시에 교량의 탄성 받침을 표현하는 범용 연결 유한 요소 모델의 유도식)

  • 정대열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.226-233
    • /
    • 1999
  • When we numerically model the bridge under seismic condition, the full model combining the super-structure and the sub-structure is considered for the more accurate results than the separate model. In this case, the super-structure is connected with the sub-structure by the elastic pad shoe that is difficult to model, because it has the three translational elastic stiffness and the three rotational elastic stiffness. The two-node General Link element is derived in finite element equation representing such a pad shoe, and it is verified by comparing the one General Link element model with the corresponding three legacy spring element model. It is easy to model the pad shoe, if the General Link finite element is used. And the seismic analysis result of the bridge full model structure, which is modeled with the General Link element, has been compared with the one of the separate model structure. The present study gives. more conservative result than that of the separate model, which does not consider the dynamic behaviour of the sub-structure.

  • PDF

Finite Element Analysis and Experimental Verification for the Cold-drawing of a FCC-based High Entropy Alloy (FCC계 고엔트로피 합금의 냉간 인발 유한요소해석 및 실험적 검증)

  • Cho, H.S.;Bae, S.J.;Na, Y.S.;Kim, J.H.;Lee, D.G.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.163-171
    • /
    • 2020
  • We present a multi-step cold drawing for a non-equiatomic Co10Cr15Fe25Mn10Ni30V10 high entropy alloy (HEA) with a simple face-centered cubic (FCC) crystal structure. The distribution of strain in the cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wires was analyzed by the finite element method (FEM). The effective strain was expected to be higher as it was closer to the surface of the wire. However, the reverse shear strain acted to cause a transition in the shear strain behavior. The critical effective strain at which the shear strain transition behavior is completely shifted was predicted to be 4.75. Severely cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wires up to 96% of the maximum cross-sectional reduction ratio were successfully manufactured without breakage. With the assistance of electron back-scattering diffraction and transmission electron microscope analyses, the abundant deformation twins were found in the region of high effective strain, which is a major strengthening mechanism for the cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wire.

A GENERALIZATION OF ω-LINKED EXTENSIONS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.725-743
    • /
    • 2022
  • In this paper, the concepts of ω-linked homomorphisms, the ω𝜙-operation, and DW𝜙 rings are introduced. Also the relationships between ω𝜙-ideals and ω-ideals over a ω-linked homomorphism 𝜙 : R → T are discussed. More precisely, it is shown that every ω𝜙-ideal of T is a ω-ideal of T. Besides, it is shown that if T is not a DW𝜙 ring, then T must have an infinite number of maximal ω𝜙-ideals. Finally we give an application of Cohen's Theorem over ω-factor rings, namely it is shown that an integral domain R is an SM-domain with ω-dim(R) ≤ 1, if and only if for any nonzero ω-ideal I of R, (R/I)ω is an Artinian ring, if and only if for any nonzero element α ∈ R, (R/(a))ω is an Artinian ring, if and only if for any nonzero element α ∈ R, R satisfies the descending chain condition on ω-ideals of R containing a.

Construction of a macro plane stress triangle element with drilling d.o.f.'s (드릴링 자유도를 가진 매크로 삼각형 요소를 이용한 평면 응력 해석)

  • 엄재성;김영태;이병채
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.886-889
    • /
    • 2004
  • A simple macro triangle with drilling d.o.f.'s is proposed for plane stress problems based on IET(Individual element test) and finite element template. Three-node triangular element has geometrical advantages in preprocessing but suffers from bad performance comparing to other shapes of elements -especially quadrilateral. Main purpose of this study is to construct a high-performance linear triangular element with limited supplementary d.o.f.'s. A triangle is divided by three sub-triangles with drilling d.o.f.'s. The sub-triangle stiffness come from IET passing force-lumping matrix, so this assures the consistency of the element. The macro element strategy takes care of the element‘s stability and accuracy like higher-order stiffness in the F.E. template. The resulting element fits on the uses of conventional three-node. Benchmark examples show proposed element in closed form stiffness from CAS (Computer algebra system) gives the improved results without more computational efforts than others.

  • PDF

Properties of a Hybrid Type Superconducting Fault Current Limiter using YBa2Cu3O7 Films (YBa2Cu3O7 박막을 이용한 하이브리드형 초전도 사고전류제한기의 특성)

  • Choi, Hyo-Sang;Cho, Yong-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.391-397
    • /
    • 2006
  • We present investigations of a hybrid type superconducting fault current limiter (SFCL), which consists of transformers and resistive superconducting elements. The secondary windings of the transformer were separated into several electrically isolated circuits and linked inductively with each other by mutual flux, each of which has a superconducting current limiting element of $YBa_2Cu_3O_7$ (YBCO) stripes as a current limiting element. Simple connection in series of the SFCL elements tends to produce ill-timed quenching because of power dissipation unbalance between SFCL elements. Both electrical isolation and mutual flux linkage of the elements provides a solution to power dissipation unbalance, inducing simultaneous quench and current redistribution of the YBCO films. This design enables to increase the voltage rating of SFCL with given YBCO stripes.

Stress analysis of a postbuckled laminated composite plate

  • Chai, Gin-Boay;Chou, Siaw Meng;Ho, Chee-Leong
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.377-386
    • /
    • 1999
  • The stress distribution in a symmetrically laminated composite plate subjected to in-plane compression are evaluated using finite element analysis. Six different finite element models are created for the study of stresses in the plate after buckling. Two finite element modelling approaches are adopted to obtain the stress distribution. The first approach starts with a full model of shell elements from which sub-models of solid elements are spin-off The second approach adopts a full model of solid elements at the beginning from which sub-models of solid elements are created. All sub-models have either 1-element thickness or 14-element thickness. Both techniques show high interlaminar direct and shear stresses at the free edges. The study also provides vital information of the distribution of all components of stresses along the unloaded edges in length direction and also in the thickness direction of the plate.