• Title/Summary/Keyword: Styrene Oxide

Search Result 108, Processing Time 0.031 seconds

Toxicity of Styrene and Styrene-oxide in Embryos of the Japanese Medaka (Oryzias latipes) (Styrene 및 Styrene-oxide가 송사리 알의 초기발생 과정에 미치는 독성)

  • 박형숙;안혜원
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.3
    • /
    • pp.61-67
    • /
    • 2000
  • Toxic lesions of styrene in the Japanese Medaka (Oryzias latipes) were compared with those of styrene oxide, the active metabolite of styrene, using embryo-larval assays. The developmental stages of Japanese Medaka (Oryzias latipes) treated with both chemicals were not altered and progressed normally. However, styrene oxide was more toxic than styrene in terms of causing death and lesions . High concentrations of styrene (higher than 4.9 ppm) and styrene oxide (higher than 2.4 ppm), resulting in more than 50% mortality, caused similar lesions of cardiovascular system, craniofacial bone formation and spinal deformities, although a number of lesions were not observed by both chemicals . In the group treated with styrene, eyeball sizes and intereye distances were reduced, while, in the group treated with styrene oxide , the eyes and eye cups were not developed and two eyes were sometimes fused. In addition, styrene oxide caused the lesion which involved the posterior brain and brain stem were herniated through the spinal cord . The noticeable difference of toxic symptoms between these two chemicals was the time of onset. Toxicities of cardiovascular system and craniofacial bone formation appeared on day 3 of development in styrene oxide treated group, but, styrene treated group staned to show hemorrhages on day 3 and the craniofacial malformation were appeared on day 5, These differences between two chemicals may be due to the metabolism of styrene to styrene oxide, the reactive intermediate.

  • PDF

Asymmetric resolution of racemic styrene oxide using recombinant Escherichia coli harboring epoxide hydrolase of Rhodotorula glutinis (Rhodotorula glutinis 유래의 고효율 재조합 Epoxide Hydrolase를 이용한 라세믹 Styrene Oxide의 비대칭 광학분할)

  • Park, Kyu-Deok;Choi, Sung-Hee;Kim, Hee-Sook;Lee, Eun-Yeol
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.369-374
    • /
    • 2008
  • The effects of reaction temperature and the addition of various detergents on the enantioselective hyrolysis activity of the recombinant Escherichia coli containing the epoxide hydrolase (EH) gene of Rhodotorula glutinis were investigated for the production of enantiopure styrene oxide. The recombinant E. coli harboring the EH gene from R. glutinis exhibited the enantiopreference toward (R)-styrene oxide with the maximum hydrolytic activity of $165.04{\mu}mol/min/mg$ of dry cell weight (dcw). The addition of 0.5% (w/v) Tween 20 at $10^{\circ}C$ increased the initial hydrolysis rate and enantioselectivity by 1.45-fold and 2.0-fold, respectively. Enantiopure (S)-styrene oxide was prepared with 99% ee enantiopurity and 46.0% yield (theoretical yield=50%) from 20 mM racemic styrene oxide.

Microbial styrene monooxygenase-catalyzed asymmetric synthesis of enantiopure styrene oxide derivatives (미생물 유래 Styrene monooxygenase를 이용한 광학활성 styrene oxide 유도체의 비대칭합성)

  • Lee, Eun-Yeol;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • Enantiopure styrene oxide derivatives are versatile building blocks for the synthesis of enantiopure pharmaceuticals. Styrene monooxygenase (SMO) catalyzes an asymmetric addition of an oxygen atom into a double bond of vinylaromatic compounds. SMO is a commercially potential biocatalyst to synthesize a variety of enantiopure epoxides with high enantiopurity and recovery yield. In this paper development of SMO biocatalyst and commercial feasibility of SMO-catalyzed asymmetric synthesis of enantiopure stylers oxide derivatives are reviewed.

Production of Chiral Styrene Oxide by Microbial Enantioselective Hydrolysis Reaction (미생물 입체선택성 가수분해 반응을 이용한 광학활성 Styrene Oxide 생산)

  • 윤성준;이은열
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.630-634
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis, and various biological methods have been investigated for their production. In this work, the enantioselective resolution of racemic styrene oxide was investigated using Aspergillus niger sp. for the production of optically pure (S)-styrene oxide. The enantioselectivity and initial hydrolysis rates of the racemic substrate were highly dependent of the pH, temperature, and the volume ratio of cosolvent. Experimental sets of pH, temperature, and the volume ratio of cosolvent were investigated using a central composite experimental design, and reaction conditions were optimized by response surface analysis. The optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4%(v/v), respectively, and optically pure (S)-styrene oxide (>99% ee) was obtained at 35% yield using this microbial enantioselective hydrolysis reaction.

  • PDF

Styrene Cytotoxicity in Testicular Leydig Cells In Vitro

  • Chung, Jin-Yong;Park, Ji-Eun;Kim, Yoon-Jae;Lee, Seung-Jin;Yu, Wook-Joon;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.26 no.3
    • /
    • pp.99-105
    • /
    • 2022
  • Styrene is the precursor of polystyrene. Human exposure to styrene could occur in occupational and residential settings and via food intake. Styrene is metabolized to styrene-7,8-oxide by cytochrome P450 enzyme. In the present study, we investigated the cytotoxicity mediated by styrene and styrene-7,8-oxide in TM3 testicular Leydig cells in vitro. We first monitored the nuclear fragmentation in Leydig cells after exposure to styrene or styrene-7,8-oxide. Hoechst 33258 cell staining showed that styrene exposure in TM3 Leydig cells did not exhibit nuclear fragmentation at any concentration. In contrast, nuclear fragmentation was seen in styrene-7,8-oxide-exposed cells. These results indicate that cytotoxicity-mediated cell death in Leydig cells is more susceptible to styrene-7,8-oxide than to styrene. Following styrene treatment, procaspase-3 and XIAP protein levels did not show significant changes, and cleaved (active) forms of caspase-3 were not detected. Consistent with the western blot results, the active forms of caspase-3 and XIAP proteins were not prominently altered in the cytoplasm of cells treated with styrene. In contrast to styrene, styrene-7,8-oxide induced cell death in an apoptotic fashion, as seen in caspase-3 activation and increased the expression of XIAP proteins. Taken together, the results obtained in this study demonstrate a fundamental idea that Leydig cells are capable of protecting themselves from cytotoxicity-mediated apoptosis as a result of styrene exposure in vitro. It remains unclear whether the steroid-producing function, i.e., steroidogenesis, of Leydig cells is also unaffected by exposure to styrene. Therefore, further studies are needed to elucidate the endocrine disrupting potential of styrene in Leydig cells.

Development of Asymmetric Resolution System for the Production of Chiral Styrene Oxide by Microbial Epoxide Hydrolase (미생물 유래의 Epoxide Hydrolase를 이용한 Chiral Styrene Oxide 생산용 비대칭 광학분할시스템개발)

  • 이지원;윤여준;이은열
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.584-588
    • /
    • 2002
  • Asymmetric enantioselective resolution system using epoxide hydrolase activity of Aspergillus niger LK was developed and operated for the production of optically pure styrene oxide. Two-phase hollow-fiber reactor system was employed for the enhanced solubility of racemic styrene oxide in organic phase and protection of epoxide hydrolase activity in aqueous phase. For the removal of phenyl-1,2-ethandiol, the inhibitor of epoxide hydrolase, cascade hollow-fiber reactor system was also developed. Chiral (S)-styrene oxide (39 mM in dodecane) could be asymmetrically resolved with high enantiopurity (> 99% ee) using these reactor system.

Styrene Oxide에서 2-Phenylethanol(PEA)를 생성하는 Pseudomonas putida Strain 2150-2의 분리 및 동정

  • 양인영;황순옥
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.155-159
    • /
    • 1996
  • The strain which produces 2-phenylethanol (PEA) from styrene oxide was isolated from soil samples near Ulsan PO/SM plant. The isolated strain was identified as Pseudomonas putida through its morphological, physiological characteristics, and DNA G+C contents. Its metabolic pathway from styrene oxide to 2-phenylethanol was studied and it was found that styrene oxide was transformed to phenylacetaldehyde, to 2phenylethanol (PEA), and then to phenylacetic acid by this strain.

  • PDF

Optimization of Epoxide Hydrolase-Catalyzed Enantioselective Hydrolysis of Racemic Styrene Oxide (Rhodotorula sp. CL-83 유래의 에폭사이드 가수분해효소를 이용한 라세믹 Styrene Oxide 입체특이성 가수분해 조건 최적화)

  • 이은열
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.765-768
    • /
    • 2002
  • Enantioselective hydrolysis of racemic styrene oxide by Rhodotorula sp. CL-82 was investigated. Reaction conditions including pH, temperature, and volume ratio of organic cosolvent were optimized using response surface methodology, and the optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.64, $33.26^{\circ}C$, and 3.09 %(v/v), respectively. Chiral (S)-phenyl oxirane could be obtained with high enantiomeric purity (ee > 99%) and 20% yield (theoretical yield = 50%) at the optimal rendition.

Enantioselective Kinetic Resolution of Racemic Styrene Oxide using Recombinant Marine Fish Epoxide Hydrolase of Mugil cephalus (해양 어류 Mugil cephalus 유래의 에폭사이드 가수분해효소를 이용한 라세믹 styrene oxide의 입체선택적 분할 반응)

  • Choi, Sung Hee;Kim, Hee Sook;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • The microsomal epoxide hydrolase gene (referred to as mMCEH) of Mugil cephalus was cloned by PCR, and then inserted to pColdI and pET-21b(+) vector, respectively. The recombinant E. coli possessing the recombinant plasmids exhibited the enantioperference toward (R)-styrene oxide. When enantioselective kinetic resolutions were conducted with 20 mM racemic styrene oxide, enantiopure (S)-styrene oxide was obtained with high enantiopurity more than 99% enantiomeric excess (ee) and 24.50% yield by using the recombinant E. coli harboring pET-21b(+)/mMCEH.

Production of Enantiopure Styrene Oxide by Recombinant Pichia pastoris carrying Double Expression cassette of Epoxide Hydrolase Gene (에폭사이드 가수분해효소 유전자의 double expression cassette 재조합 Pichia pastoris를 이용한 enantiopure styrene oxide의 제조)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.136-142
    • /
    • 2008
  • A recombinant Pichia pastoris carrying double expression cassette of Rhodotorula glutinis epoxide hydrolase(RgEH) gene was developed and used for preparing enantiopure (S)-styrene oxide from racemic mixture of styrene oxide. BglII restriction site of original RgEH gene (pPICZ B/RgEH #2) of previous report was mutated using PCR technique for the construction of double expression cassette containing promoter ($P_{AOX1}$), EH gene and transcription terminator ($TT_{AOX1}$) in pPICZ C vector. Double expression cassette with RgEH was inserted into the chromosomal DNA of P. pastoris. $V_{max}$ ($2.2{\mu}mol\;min^{-1}mg\;dcw^{-1}$) on (R)-styrene oxide of P. pastoris with double expression cassette was about 6-fold higher than that ($0.4{\mu}mol\;min^{-1}mg\;dcw^{-1}$) of P. pastoris with single expression cassette. For the determination of the optimal condition, the effects of detergent and temperature on the enantioselective hydrolytic activity and yield of the enantiomer were investigated. When the reaction was performed at $10^{\circ}C$ for 10 min in the presence of 0.5% Tween 20, enantiopure (S)-styrene oxide with 99.9% ee was obtained as the yield 43.4 % from 20 mM racemic sustrate.