• Title/Summary/Keyword: Styela clava tunics

Search Result 7, Processing Time 0.016 seconds

The Preparation of Mask-pack Sheet Blended with Styela clava tunics and Natural Polymer (미더덕껍질과 천연고분자 혼합물을 이용한 마스크팩시트의 제조방법)

  • Yun, Woobin;Lee, Yechan;Kim, Dasom;Kim, Jieun;Sung, Jieun;Lee, Hyunah;Son, Hongju;Hwang, Daeyoun;Jung, Youngjin
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • Ultraviolet radiation have much influenced with a deep wrinkles, roughness, laxity of skin damage and pigmentation through oxidative stress and oxidative photo-damage. This study investigates the functional properties of hydrogel facial mask sheets made from agar, Styela clava tunics and Broussonetia papyrifera tunics. The skin of S. clava is covered with a hard cellulose containing glycoprotein, glycosaminoglycan and chondroitin sulfate. B. papyrifera is better known as Paper mulberry. It contains kazinol which serves as a tyrosinase inhibitor and skin whitening agent. The tensile strength of facial mask sheet was measured by universal testing machine, and the water absorption and moisture permeability of facial mask sheet were measured by dryer. Additionally, the DPPH assay and MTT assay were conducted for anti-oxidative activity and cytotoxicity of facial mask sheet. The whitening effect of the facial mask sheet was measured by tyrosinase inhibitor assay. These tests showed that the three ingredients are suitable cosmetic materials. The results reveal that they produce a high quality hydrogel facial mask sheet when the membrane contains 1%(W/V) of agar, 0.1%(W/V) of B. papyrifera tunics and 0.05%(W/V) of S. clava tunics.

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending(I) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(I))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Regenerated composite fibers are prepared from solution(styela clava tunics /poly vinyl alchol) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt/wt) as a solvent by dry-wet spinning. The chemical cellulose (94%, ${\alpha}$-cellulose content) used for this study is extracted from styela clava tunics (SCT, Midduck), which are treated in chemical process and mechanical grinding. The structure and physical properties of regenerated composite fibers were investigated through IR-spetra, DSC, TGA and SEM. The optimal blend ratio of SCT/PVA for spinning solution was 70/30 and the total weight was 4% concentrations in NMMO/water solvent system. The fiber density, moisture contents and the degree of swelling were $1.5(g/cm^3)$ 10.2(%) and 365(%), respectively. The crystallinity index of composite fibers are decreased as the PVA contents increased. Thermal decomposition of composite fibers took place in two stages at around $250^{\circ}C$ and $550^{\circ}C$. The best thermal stability was obtained with 30% PVA contents.

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending( II) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(II))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2008
  • Regenerated composite fibers were prepared from solution of styela clava tunics(SC) and poly vinyl alchol(PVA) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt%/wt%) as a solvent by dry jet-wet spinning. Structure and physical properties of regenerated composite fibers were investigated through birefrngence, x-ray diffratograms, tenacity, fibrillation and SEM. Optimal blend ratio of SC/PVA for mechanical properties of composite fibers was 70/30 and total weight was 4wt% concentrations in NMMO/$H_2O$ solvent system. Crystallinity index of composite fibers were decreased as the PVA contents increased. Fibrillation of $10{\sim}20wt%$ PVA blended fibers were occurred less than pure SC fiber. Shape of composite fibers were a circle cross section within 10wt% PVA content. But the cross section of fibers were changed as crushed flat with the PVA contents increased.

Study for Biodegradability of Cellulose Derived from Styela clava tunics (미더덕껍질 셀룰로오스의 매립 생분해성에 대한 연구)

  • Seong, Keum-Yong;Lee, Seunghyun;Yim, Sang-Gu;Son, Hong Joo;Lee, Young-Hee;Hwang, Dae Youn;Jung, Young Jin
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.149-154
    • /
    • 2015
  • To investigate the biodegradation of the cellulose powder(CP) derived from Styela clava tunics(SCT), some physico-chemical properties and biodegradability of SCT-CP were measured after the incubation for 45 days. The particles size of SCT-CP prepared with washing, bleaching, drying, and grinding processes was $150-400{\mu}m$ although most of particles (70%) was more than $400{\mu}m$. The cellulose structures of SCT-CP detected using the X-ray diffraction and DSC analysis was very similar with that of wood pulp powder(WP-CP). The glass transition temperature was not detected in both samples. Furthermore, more than 90% of the SCT-CP was degraded, whereas only over 70% of the WP-CP was degraded after the incubation for 45 days. Therefore, these results suggest the possibility that SCT-CP is particularly applicable to prepare medical fiber and film for disease treatment.

In Vivo Evaluation of Chondroitin Sulfates from Midduk (Styela clava) and Munggae Tunics (Halocynthia roretzi) as a Cosmetic Material (In vivo에 의한 미색류 콘드로이틴황산의 기능성 화장품 소재로서의 가능성)

  • 김배환;안삼환;최병대;강석중;김영림;이후장;오명주;정태성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.641-645
    • /
    • 2004
  • Crude chondroitin sulfates extracted from midduck tunics (Styela clava) and munggae tunics (Halocynthia roretzi) were examined in vivo in order to be utilized as a cosmetic material which was followed by an in vitro assay. Examinations, such as acute oral toxicity, skin sensitization, acute eye irritation, and primary skin irritation, were peformed with a variety of laboratory animals. Phototoxic and photosensitization tests were not conducted since all chondroitin sulfates failed to absorb U.V. light at the range of 280 to 420 nm. In acute dermal and eye irritation, both specific clinical signs and dead cases were not demonstrated during the test period, but crude chondroitin sulfates from midduck and munggae tunics, and standard chondroitin sulfate from bovine trachea were showed 2.5, 1 and 1.25 of acute ocular irritation index (A.O.I.), respectively. In the case of skin sensitization, crude chondroitin sulfate from midduck tunics exhibited neither specific clinical signs nor dead cases in the entire course of the examination. While in acute oral toxicity, crude chondroitin sulfates from both midduck and munggae tunics found neither specific clinical signs nor dead cases during the test, and LD50 was suspected to be over 2 g/kg. Based on this study, it was proven that crude chondroitin sulfates from either midduck or munggae tunics can be used safely as a cosmetic material.

Preparation and Biocompatibility of Medical Fiber from Novel Regenerated Cellulose from Styela clava tunic (미더덕껍질의 재생셀룰로오스를 이용한 의료용 섬유의 제조 및 생체적합성)

  • Song, Sung Hwa;Kim, Ji Eun;Choi, Jun Young;Park, Jin Ju;Lee, Mi Rim;Song, Bo Ram;Lee, Yechan;Kim, Hong Sung;Lee, Jae Ho;Lim, Yong;Hwang, Dae Youn;Jung, Young Jin
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.117-129
    • /
    • 2018
  • Cellulose has been widely applied into various medical fields including scaffolding, tissue engineering and tissue formation. In this study, we manufactured cellulose medical fiber from Styela clava tunics(SCT-CS) and analyzed the tensile strength, elongation at break, fluid uptake and surface morphology. And then, the biocompatibility and toxicity of SCT-CS were measured in Sprague-Dawley(SD) rats after the implantation for 30, 60 and 90 days. The level of tensile strength and fluid uptake were lower in SCT-CS than chromic catgut(CCG), while elongation at break level were maintained the higher in SCT-CS. Also, the roughness with pronounced surface patterns as a result of in vivo degradation was significantly greater in CCG than this of SCT-CS although these levels gradually appeared with time in both groups. After implantation for 90 days, SCT-CS and CCG was successfully implanted around muscle of thigh without any significant immune response. Furthermore, no significant alterations were measured in serum parameters and the specific pathological features induced by most toxic compounds for liver and kidney toxicity. Therefore, these results suggest that SCT-CS showing good biocompatibility and non-toxicity can be successfully prepared from cellulose powder of SCT as well as has the potential for use as a powerful biomaterial for medical sutures.

In vitro Examination of Chondroitin Sulfates Extracted Midduck (Styela clava) and Munggae Tunics (Halocynthia roretzi) as a Cosmetic Material (In vitro에서 미색류 껍질로부터 추출한 콘드로이틴황산의 기능성 화장품 소재로서의 가능성)

  • 김영림;안삼환;최병대;강석중;신기욱;오명주;정태성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.646-652
    • /
    • 2004
  • With the aim of using a cosmetic material, chondroitin sulfates extracted from midduck tunics (Styela clava) and munggae tunics (Halocynthia roretzi) were examined in vitro with two cell lines for cell toxicity, collagen synthesis, cell growth and recovery ability after U.V. irradiation. Cell toxicity test with A 431 and CCD 1108Sk was able to observe high activity between 400 and 600 $\mu\textrm{g}$/m while standard chondroitin sulfate (CS) purchased from Sigma was showed at 80 $\mu\textrm{g}$/mL. Even fraction 1 and 2 collected from chondroitin sulfates originated from midduck appeared having the highest activity between 600 and 1000 $\mu\textrm{g}$/mL, but slightly lower compared to crude chondroitin sulfates from both mideduck and munggae. In cell growth examination, it was not able to find significant differences between chondroitin sulfates used. Both crude chondroitin sulfates were exhibited the highest activity for two cell lines except that of mideduck which was showed activity for CCD 1108Sk. CS, fraction 1 and 2 from midduck were not able to demonstrate a significant activity in collagen synthesis. On the contrary, crude chondroitin sulfates from both munggae and midduck were showed the highest activity at 100 and 50 $\mu\textrm{g}$/mL with only CCD 1108Sk. The recovery ability after U.V. irradiation with crude chondroitin sulfates from both munggae and midduck were showed high activity at 400 $\mu\textrm{g}$/mL with CCD 1108Sk and A 431. But there were no activity observed in fractions examined, As a consequence, the crude chondroitin sulfates from both munggae and midduck might not only be available as a cosmetic material but also useful for increasing some activity by blending properly.