DOI QR코드

DOI QR Code

Preparation and Biocompatibility of Medical Fiber from Novel Regenerated Cellulose from Styela clava tunic

미더덕껍질의 재생셀룰로오스를 이용한 의료용 섬유의 제조 및 생체적합성

  • Song, Sung Hwa (Department of Biomaterials Science, Pusan National University) ;
  • Kim, Ji Eun (Department of Biomaterials Science, Pusan National University) ;
  • Choi, Jun Young (Department of Biomaterials Science, Pusan National University) ;
  • Park, Jin Ju (Department of Biomaterials Science, Pusan National University) ;
  • Lee, Mi Rim (Department of Biomaterials Science, Pusan National University) ;
  • Song, Bo Ram (Department of Biomaterials Science, Pusan National University) ;
  • Lee, Yechan (Department of Biomaterials Science, Pusan National University) ;
  • Kim, Hong Sung (Department of Biomaterials Science, Pusan National University) ;
  • Lee, Jae Ho (Department of Biomaterials Science, Pusan National University) ;
  • Lim, Yong (Department of Clinical Laboratory Science,Dong-Eui University) ;
  • Hwang, Dae Youn (Department of Biomaterials Science, Pusan National University) ;
  • Jung, Young Jin (Department of Biomaterials Science, Pusan National University)
  • 송성화 (부산대학교 바이오소재과학과) ;
  • 김지은 (부산대학교 바이오소재과학과) ;
  • 최준영 (부산대학교 바이오소재과학과) ;
  • 박진주 (부산대학교 바이오소재과학과) ;
  • 이미림 (부산대학교 바이오소재과학과) ;
  • 송보람 (부산대학교 바이오소재과학과) ;
  • 이예찬 (부산대학교 바이오소재과학과) ;
  • 김홍성 (부산대학교 바이오소재과학과) ;
  • 이재호 (부산대학교 바이오소재과학과) ;
  • 임용 (동의대학교 임상병리학과) ;
  • 황대연 (부산대학교 바이오소재과학과) ;
  • 정영진 (부산대학교 바이오소재과학과)
  • Received : 2018.03.15
  • Accepted : 2018.04.30
  • Published : 2018.06.27

Abstract

Cellulose has been widely applied into various medical fields including scaffolding, tissue engineering and tissue formation. In this study, we manufactured cellulose medical fiber from Styela clava tunics(SCT-CS) and analyzed the tensile strength, elongation at break, fluid uptake and surface morphology. And then, the biocompatibility and toxicity of SCT-CS were measured in Sprague-Dawley(SD) rats after the implantation for 30, 60 and 90 days. The level of tensile strength and fluid uptake were lower in SCT-CS than chromic catgut(CCG), while elongation at break level were maintained the higher in SCT-CS. Also, the roughness with pronounced surface patterns as a result of in vivo degradation was significantly greater in CCG than this of SCT-CS although these levels gradually appeared with time in both groups. After implantation for 90 days, SCT-CS and CCG was successfully implanted around muscle of thigh without any significant immune response. Furthermore, no significant alterations were measured in serum parameters and the specific pathological features induced by most toxic compounds for liver and kidney toxicity. Therefore, these results suggest that SCT-CS showing good biocompatibility and non-toxicity can be successfully prepared from cellulose powder of SCT as well as has the potential for use as a powerful biomaterial for medical sutures.

Keywords

References

  1. N. A. Swanson and T. A. Tromovitch, Suture Materials, 1980s: Properties, Uses, and Abuses, International J. of Dermatology, 21(7), 373(1982). https://doi.org/10.1111/j.1365-4362.1982.tb03154.x
  2. C. K. Pillai andC. P. Sharma, Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance, J. of Biomaterials Applications, 25(4), 291(2010). https://doi.org/10.1177/0885328210384890
  3. K. Shao, B. Han, J. Gao, Z. Jiang, W. Liu, W. Liu, and Y. Liang, Fabrication and Feasibility Study of an Absorbable Diacetyl Chitin Surgical Suture for Wound Healing, J. of Biomedical Materials Research Part B, Applied Biomaterials, 104(1), 116(2016). https://doi.org/10.1002/jbm.b.33307
  4. R. F. Edlich, P. H. Panek, G. T. Rodeheaver, V. G. Turnbull, L. D. Kurtz, and M. T. Edgerton, Physical and Chemical Configuration of Sutures in the Development of Surgical Infection, Annals of Surgery, 177(6), 679 (1973). https://doi.org/10.1097/00000658-197306000-00006
  5. A. Pavan, M. Bosio, and T. Longo, A Comparative Study of Poly (glycolic acid) and Catgut as Suture Materials, Histomorphology and Mechanical Properties, J. of BiomedicalMaterials Research, 13(3), 477(1979).
  6. J. Vasenius, S. Vainionpaa, K. Vihtonen, A. Makela, P. Rokkanen, M. Mero, and P. Tormala, Comparison of in vitro Hydrolysis, Subcutaneous and Intramedullary Implantation to Evaluate the Strength Retention of Absorbable Osteosynthesis Implants, Biomaterials, 11(7), 501(1990). https://doi.org/10.1016/0142-9612(90)90065-X
  7. O. T. Burton and P. Zaccone, The Potential Role of Chitin in Allergic Reactions, Trends in Immunology, 28(10), 419(2007). https://doi.org/10.1016/j.it.2007.08.005
  8. T. A. Reese, H. E. Liang, A. M. Tager, A. D. Luster, N. V. Rooijen, D. Voehringer, and R. M. Locksley, Chitin Induces Accumulation in Tissue of Innate Immune Cells Associated with Allergy, Nature, 447(7140), 92(2007). https://doi.org/10.1038/nature05746
  9. B. Guyuron and C. Vaughan, A Comparison of Absorbable and Nonabsorbable Suture Materials for Skin Repair, Plastic and Reconstructive Surgery, 89(2), 234(1992). https://doi.org/10.1097/00006534-199202000-00005
  10. A. N. Morritt, Absorbable or Non-absorbable Sutures?, Annals of The Royal College of Surgeons of England, 93(2), 183(2011).
  11. E. I. Shishatskaya, T. G. Volova, A. P. Puzyr, O. A. Mogilnaya, and S. N. Efremov, Tissue Response to the Implantation of Biodegradable Polyhydroxyalkanoate Sutures, J. of Materials Science, Materials in Medicine, 15(6), 719(2004). https://doi.org/10.1023/B:JMSM.0000030215.49991.0d
  12. M. Tachibana, A. Yaita, H. Taniura, K. Fukasawa, N. Nagasue, and T. Nakamura, The Use of Chitin as a New Absorbable Suture Material-an Experimental Study, The Japanese J. of Surgery, 18(5), 533(1988). https://doi.org/10.1007/BF02471487
  13. K. Y. Seong, E. K. Koh, S. Lee, M. H. Kwak, H. J. Son, H. S. Lee, D. Y. Hwang, andY. J. Jung, Preparation and Characterization of High Absorptive Cellulose Film Derived from Styela clava Tunic for Wound Dressing, Textile Coloration and Finishing, 27(1), 70(2015). https://doi.org/10.5764/TCF.2015.27.1.70
  14. W. B. Yun, Y. C. Lee, D. O. Kim, J. E. Kim, J. E. Sung, H. A. Lee, H. J. Son, D. Y. Hwang, and Y. J. Jung, The Preparation of Mask-pack Sheet Blended with Styela clava Tunics and Natural Polymer, Textile Coloration and Finishing, 29(1), 45(2017). https://doi.org/10.5764/TCF.2017.29.1.45
  15. Y. J. Jung, B. J. An, D. Y. Hwang, H. D. Kim, S. M. Park, H. Cho, andK. H. Sung, Preparation and Properties of Regenerated Cellulosic Biomaterialmade Styela clava Tunics, Biomaterials Research, 12(2), 71(2008).
  16. J. Y. Jung, B. J. An, H. S. Kim, H. W. Choi, E. P. Lee, J. H. Lee, H. D. Kim, S. M. Park, and S. D. Kim, Preparation and Properties of Regenerated Composite Fibers made from Styela clava Tunics/PVA Blending (I), Textile Coloration and Finishing, 20(2), 1(2008). https://doi.org/10.5764/TCF.2008.20.2.001
  17. J. Y. Jung, B. J. An, H. S. Kim, H. W. Choi, E. P. Lee, J. H. Lee, H. D. Kim, S. M. Park, and S. D. Kim, Preparation and Properties of Regenerated Composite Fibers made from Styela clava Tunics/PVA Blending (II), Textile Coloration and Finishing, 20(3), 38(2008). https://doi.org/10.5764/TCF.2008.20.2.038
  18. M. H. Kwak, J. E. Kim, Y. J. Lee, S. H. Song, J. Go, J. W. Lee, J. H. In, E. J. Kim, Y. J. Jung, Y. H. Yun, and D. Y. Hwang, Development and Efficacy Study of Hydrocolloid Membrane Containing Cuttlefish Bone for Wound Treatment, Biomaterials Research, 17(2), 59 (2013).
  19. S. H. Song, K. Y. Seong, J. E. Kim, J. Go, E. K. Koh, J. E. Sung, H. J. Son, Y. J. Jung, H. S. Kim, J. T. Hong, and D. Y. Hwang, Effects of Different Cellulose Membranes Regenerated from Styela clava Tunics on Wound Healing, International J. of Molecular Medicine, 39(5), 1173(2017).
  20. E. K. Koh, Y. J. Lee, J. E. Kim, M. H. Kwak, J. Go, H. J. Son, H. S. Lee, Y. Jung, and D. Y. Hwang, Protective Effect of Aqueous Extracts of Styela clava Tunic Against Apoptosis of HepG2 Cells Induced by Hydrogen Peroxide, J. of Life Science, 24(6), 595(2014). https://doi.org/10.5352/JLS.2014.24.6.595
  21. S. M. Lee, Y. R. Lee, K. S. Cho, S. Y. Park, E. Y. Jang, D. Y. Hwang, Y. J. Jung, andH. J. Son, Antioxidant and Antihypertensive Activities of Solvent Extract from Styela clava Tunic, FisheryWaste, J. of Environmental Science International, 24(7), 917(2015). https://doi.org/10.5322/JESI.2015.24.7.917
  22. E. K. Koh, J. E. Kim, J. Go, S. H. Song, J. E. Sung, H. J. Son, Y. J. Jung, B. H. Kim, Y. S. Jung, andD. Y. Hwang, Protective Effects of the Antioxidant Extract Collected from Styela clava Tunics on UV Radiation Induced Skin Aging in Hairless Mice, International J. of Molecular Medicine, 38(5), 1565(2016). https://doi.org/10.3892/ijmm.2016.2740
  23. E. K. Koh, J. E. Kim, S. H. Song, J. E. Sung, H. A. Lee, K. S. Kim, J. T. Hong, and D. Y. Hwang, Ethanol Extracts Collected from the Styela clava Tunic Alleviate Hepatic Injury Induced by Carbon Tetrachloride ($CCl_4$) through Inhibition of Hepatic Apoptosis, Inflammation, and Fibrosis, J. of Toxicologic Pathology, 30(4), 291 (2017). https://doi.org/10.1293/tox.2017-0021
  24. K. Y. Seong, S. Lee, S. G. Yim, H. J. Son, Y. H. Lee, D. Y. Hwang, andY. J. Jung, Study for Biodegradability of Cellulose Derived from Styela clava tunics, Textile Coloration and Finishing, 27(2), 149(2015). https://doi.org/10.5764/TCF.2015.27.2.149
  25. M. Kokabi, M. Sirousazar, and Z. M. Hassan, PVA-Clay Nanocomposite Hydrogels for Wound Dressing, European Polymer J., 43(3), 773(2007). https://doi.org/10.1016/j.eurpolymj.2006.11.030
  26. S. H. Song, J. E. Kim, Y. J. Lee, M. H. Kwak, G. Y. Sung, S. H. Kwon, H. J. Son, H. S. Lee, Y. J. Jung, and D. Y. Hwang, Cellulose Film Regenerated from Styela clava Tunics have Biodegradability, Toxicity and Biocompatibility in the Skin of SD Rats, J. of Materials Science: Materials inMedicine, 25(6), 1519(2014). https://doi.org/10.1007/s10856-014-5182-8
  27. Y. J. Jung, S. E. Jung, L. Y. K. Lee, J. H. Kim, J. E. Kim, E. P. Lee, H. W. Choi, H. S. Kim, J. H. Lee, B. C. Kang, J. S. Wan, andD. Y. Hwang, Biodegradability and Toxicity of Regenerated Cellulose Films Prepared from the Tunicate Styela clava, Biomaterials Research, 1(3), 87 (2009).