• Title/Summary/Keyword: Study of Failure

Search Result 11,987, Processing Time 0.042 seconds

A study on a Prediction of Dangerous Failure Rate in the Embedded System for the Track Side Functional Module (TFM에 대한 내장형제어기의 위험측고장률 예측에 관한 연구)

  • SHIN Ducko;LEE Jae-Hoon;LEE Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.170-175
    • /
    • 2005
  • This study presents a prediction of a failure rate in a safety required system that consists of a embedded control system, requiring a satisfaction of a quantitative safety requirement. International Standards are employed to achieve a regular procedures in the whole life cycle of a system, for the purpose of a prediction and a evaluation of a fault that might be able to be happened in a system. This International Standards uses SIL (Safety Integrity Level) to evaluate a safety level of a system. SIL is divided into 4 levels, from level 1 to level 4, and each level has functional failure rate and dangerous failure rate of a system. In this paper we describe the conventional method to predict the dangerous failure rate and propose a method using hazard analysis to predict the dangerous failure rate. The conventional method and the technique using hazard analysis to predict the dangerous failure rate are made a comparison through the control modules of the interlocking system in KTX. The proposed method verify better effectiveness for the prediction of the dangerous failure rate than that of the conventional method.

A Study on Rainfall Induced Slope Failures: Implications for Various Steep Slope Inclinations

  • Do, Xuan Khanh;Jung, Kwansue;Lee, Giha;Regmi, Ram Krishna
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.5-16
    • /
    • 2016
  • A rainfall induced slope failure is a common natural hazard in mountainous areas worldwide. Sudden and rapid failures which have a high possibility of occurrence in a steep slope are always the most dangerous due to their suddenness and high velocities. Based on a series of experiments this study aimed to determine a critical angle which could be considered as an approximate threshold for a sudden failure. The experiments were performed using 0.42 mm mean grain size sand in a 200 cm long, 60 cm wide and 50 cm deep rectangular flume. A numerical model was created by integrating a 2D seepage flow model and a 2D slope stability analysis model to predict the failure surface and the time of occurrence. The results showed that, the failure mode for the entire material will be sudden for slopes greater than $67^{\circ}$; in contrast the failure mode becomes retrogressive. There is no clear link between the degree of saturation and the mode of failure. The simulation results in considering matric suction showed good matching with the results obtained from experiment. A subsequent discarding of the matric suction effect in calculating safety factors will result in a deeper predicted failure surface and an incorrect predicted time of occurrence.

A Study on the Reliability of Superconducting Fault Current Limiter and Adjacent Distribution Equipments (초전도한류기와 인근 배전설비의 신뢰도에 관한 연구)

  • Bae, In-Su;Kim, Sung-Yul;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2122-2127
    • /
    • 2009
  • This study presents the failure rate and repair rate of Superconducting Fault Current Limiter(SFCL) and adjacent distribution equipments. When the fault current penetrated SFCL, the supply of electric power to the customers can be partly continued. It is expected that SFCL makes to improve the reliability index of customers. Contrary to the expectations, the series connection between SFCL and distribution system could deteriorate the reliability index. To evaluate the reliability index in the distribution system including SFCL, the failure rate and repair rate of SFCL are required as well as that of distribution equipments. Also, the insertion of SFCL makes to change the failure rate and repair rate of adjacent equipments. This study proposes a method to calculate the failure rate and repair rate of a component combining SFCL and adjacent equipments.

On Optimal Replacement Policy for a Generalized Model (일반화된 모델에 대한 최적 교체정책에 관한 연구)

  • Ji Hwan Cha
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • In this paper, the properties on the optimal replacement policies for the general failure model are developed. In the general failure model, two types of system failures may occur : one is Type I failure (minor failure) which can be removed by a minimal repair and the other, Type II failure (catastrophic failure) which can be removed only by complete repair. It is assumed that, when the unit fails, Type I failure occurs with probability 1-p and Type II failure occurs with probability p, $0\leqp\leq1$. Under the model, the system is minimally repaired for each Type I failure, and it is repaired completely at the time of the Type II failure or at its age T, whichever occurs first. We further assume that the repair times are non-negligible. It is assumed that the minimal repair times in a renewal cycle consist of a strictly increasing geometric process. Under this model, we study the properties on the optimal replacement policy minimizing the long-run average cost per unit time.

Study on the Undrained Strength Characteristics of Fiber Mixed Clay (섬유혼합 점토의 비배수 강도 특성에 대한 연구)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.382-387
    • /
    • 1998
  • Triaxial compression tests were run to study on the undrained strength characteristics of fiber mixed kaolin clay(Hadong). The influence of various test parameters such as amount and aspect ratio(ratio of length to diameter) of fiber, confining stress was also investigated. Test results showed that the increase in aspect ratio was increased in deviator stress at failure, but no effect on pore water pressure at failure. Deviator stress at failure was also increased at 0.5% mixing ratio(weight fraction of fiber to that of soil solid) of fiber but it was, thereafter, decreased and wits reached to constant after 2% mixing ratio. On the contrary, Pore water pressure at failure was increased as mixing ratio of fiber was greater than 1%. Deviator stress and pore water pressure of both clay and fiber mixed clay(FMC) at failure were increased as confining stress was increased. Deviator stress of FMC at failure was about 10% larger than that of clay, but pore water pressure of FMC at failure was almost similar to that of clay.

  • PDF

Characteristics of Fatigue Failure according to Thickness of Material and Number of Passes in Cruciform Fillet Weld Zone (십자형 필릿 용접부에서 재료 두께 및 용접 층수에 따른 피로파괴 특성)

  • Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.45-50
    • /
    • 2010
  • Most of joining processes for machine and steel structure are performed by butt and fillet welding. The mechanical properties and fatigue strength of their welding zone can be effected largely by the differential of generated heat and changes of grain size according to thickness of material and number of passes in welding process. In this study, it was investigated about characteristics of fatigue failure according to thickness of material and number of passes in cruciform fillet weld zone as the basic study for safe and economic design of welding structures. Fracture modes in cruciform fillet weld zone are classified into toe failure and root failure according to non-penetrated depth. It can be accomplished economic design of welding structures considering fatigue strength when the penetrated depth in fillet weld zone is controled properly.

Risk factors for orthodontic fixed retention failure: A retrospective controlled study

  • Kaat Verschueren;Amit Arvind Rajbhoj;Giacomo Begnoni;Guy Willems;Anna Verdonck;Maria Cadenas de Llano-Perula
    • The korean journal of orthodontics
    • /
    • v.53 no.6
    • /
    • pp.365-373
    • /
    • 2023
  • Objective: To investigate the potential correlation between fixed orthodontic retention failure and several patient- and treatment-related factors. Methods: Patients finishing treatment with fixed appliances between 2016 and 2017 were retrospectively included in this study. Those not showing fixed retention failure were considered as control group. Patients with fixed retention failure were considered as the experimental group. Additionally, patients with failure of fixed retainers in the period of June 2019 to March 2021 were prospectively identified and included in the experimental group. The location of the first retention failure, sex, pretreatment dental occlusion, facial characteristics, posttreatment dental occlusion, treatment approach and presence of oral habits were compared between groups before and after treatment separately by using a Fisher exact test and a Mann-Whitney U test. Results: 206 patients with fixed retention failure were included, 169 in the mandibular and 74 in the maxillary jaws. Significant correlations were observed between retention failure in the mandibular jaws and mandibular arch length discrepancy (P = 0.010), post-treatment growth pattern (P = 0.041), nail biting (P < 0.001) and abnormal tongue function (P = 0.002). Retention failure in the maxillary jaws was more frequent in patients with IPR in the mandibular jaws (P = 0.005) and abnormal tongue function (P = 0.021). Conclusions: This study suggests a correlation between fixed retention failure and parafunctional habits, such as nail biting and abnormal tongue function. Prospective studies with larger study populations could further confirm these results.

A Study on the Failure Analysis and Performance Improvement of a Decanter (디칸터의 고장분석 및 성능 향상에 관한 연구)

  • Shin, Chang-Ho;Lee, Dong-Chul;Kim, Woo-Hyung;Choi, Tae-Ju;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.586-592
    • /
    • 2004
  • In this study, the failure analysis of a decanter is carried out and the methods of performance improvement are presented. The decanter is a centrifugal separator that is used to separate water and solids from municipal and industrial sludge. Therefore, the decanter should be designed to improve the dewatering of sludge. Besides high performance, the decanter should guarantee its life time under a severe using condition. For theses reasons, the failure analysis and performance improvement of the decanter are studied. It is found from this study that the failure is caused by mass unbalance, wear, clogging or crack. If these failure causes are prevented, the life time as well as the performance is expected to be improved.

A Study on Failure Mode Analysis of Machining Center (머시닝센터의 고장모드 해석에 관한 연구)

  • Kim, Bong-Suk;Kim, Jong-Soo;Lee, Soo-Hun;Song, Jun-Yeup;Park, Hwa-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.74-79
    • /
    • 2001
  • In this study, a failure mode analysis of CNC machining center is described. First, the system is classified through subsystems into components using part lists and drawings. The component failure rate and failure mode analysis are performed to identify the weak components of a machining center with reliability database. The failure probabilistic function of mechanical part is analyzed by Weibull distribution. The Kolmogorov-Smirnov test is also used to verify the goodness of fit.

  • PDF

A Study for FMEA and Optimization of Failure Diagnosis Sequence Using Probability of Failure Cause (고장원인 확률을 이용한 FMEA와 고장진단 순서의 최적화)

  • Song, Kee-Tae;Kim, Min-Ho;Baek, Young-Gu;Lee, Key-Seo;Kim, Soo-Myong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.749-757
    • /
    • 2007
  • Recently, with increasing interested in improvement of operational reliability and the systematic maintenance activities, the RCM analysis has been applied and tried to lots of applicable industries. This study covers applying the probability of failure cause to FMEA, and proposes an analytical method for this. Also, the measures of quantitative classification for the result of failure cause probability are addressed. Based on the field data, this thesis presents an identification for causes and characteristics of failure, and reviews them periodically from the above methodologies. As using FMEA applied the probability of failure cause, we in the future can look forward to improvement of efficiency for failure diagnosis & inspection, and reliability.

  • PDF