• 제목/요약/키워드: Structures and mechanical properties

검색결과 1,750건 처리시간 0.032초

Change of transmission characteristics of FSSs in hybrid composites due to residual stresses

  • Hwang, In-Han;Chun, Heoung-Jae;Hong, Ik-Pyo;Park, Yong-Bae;Kim, Yoon-Jae
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1501-1510
    • /
    • 2015
  • The frequency selective surface (FSS) embedded hybrid composite materials have been developed to provide excellent mechanical and specific electromagnetic properties. Radar absorbing structures (RASs) are an example material that provides both radar absorbing properties and structural characteristics. The absorbing efficiency of an RAS can be improved using selected materials having special absorptive properties and structural characteristics and can be in the form of multi-layers or have a certain stacking sequence. However, residual stresses occur in FSS embedded composite structures after co-curing due to a mismatch between the coefficients of thermal expansion of the FSS and the composite material. In this study, to develop an RAS, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis, considering the effect of stacking sequence of composite laminates with square loop (SL) and double square loop (DSL) FSS patterns. The FSS radar absorbing efficiency was measured in the K-band frequency range of 21.6 GHz. Residual stress leads to a change in the deformation of the FSS pattern. Using these results, the effect of transmission characteristics with respect to the deformation on FSS pattern was analyzed using an FSS Simulator.

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites

  • Kim, Seong Hwang;Heo, Young-Jung;Park, Soo-Jin
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.517-527
    • /
    • 2019
  • To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.

A potential review on the influence of nanomaterials on the mechanical properties of high strength concrete

  • P. Jagadesh;Karthik Prabhu ;Moutassim Charai;Ibrahim Y. Hakeem;Emrah Madenci;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.649-666
    • /
    • 2023
  • In the current scenario, conventional concrete faces a substantial challenge in the modern era of the construction industry. Today's structures are massive, featuring innovative designs and strict time constraints. Conventional concrete does not provide the required compressive strength, tensile strength, flexural strength, toughness, and cracking resistance. As a result, most of engineers and professionals prefer to use ultra-high-performance concrete (UHPC), based on its wide advantages. Several advantages like mechanical and durability properties of UHPC provides dominant properties than the traditional concrete. Mix proportions of UHPC consists of higher powder content which provides maximum hydration and pozzolanic reaction, thereby contributing to the enhancement of the UHPC properties. Apart from that the nanomaterials provides the filler behavior, which will further improve the density. Enhanced density and mechanical properties lead to improved durability properties against water absorption and other typical chemicals. Nanomaterials are the most adopted materials for various applications, ranging in size from 0.1 nanometers to 100 nanometers. This article explores the effects of nanomaterial application in UHPC as a replacement for cementitious material or as an additive in the UHPC mix. The physical and durability properties modifications and improvements of UHPC, as well as negative effects, limitations, and shortcomings, are also analyzed.

Prediction of the mechanical properties of granites under tension using DM techniques

  • Martins, Francisco F.;Vasconcelos, Graca;Miranda, Tiago
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.631-643
    • /
    • 2018
  • The estimation of the strength and other mechanical parameters characterizing the tensile behavior of granites can play an important role in civil engineering tasks such as design, construction, rehabilitation and repair of existing structures. The purpose of this paper is to apply data mining techniques, such as multiple regression (MR), artificial neural networks (ANN) and support vector machines (SVM) to estimate the mechanical properties of granites. In a first phase, the mechanical parameters defining the complete tensile behavior are estimated based on the tensile strength. In a second phase, the estimation of the mechanical properties is carried out from different combination of the physical properties (ultrasonic pulse velocity, porosity and density). It was observed that the estimation of the mechanical properties can be optimized by combining different physical properties. Besides, it was seen that artificial neural networks and support vector machines performed better than multiple regression model.

Effect of the type of sand on the fracture and mechanical properties of sand concrete

  • Belhadj, Belkacem;Bederina, Madani;Benguettache, Khadra;Queneudec, Michele
    • Advances in concrete construction
    • /
    • 제2권1호
    • /
    • pp.13-27
    • /
    • 2014
  • The principal objective of this study is to deepen the characterization studies already led on sand concretes in previous works. Indeed, it consists in studying the effect of the sand type on the main properties of sand concrete: fracture and mechanical properties. We particularly insist on the determination of the fracture characteristics of this material which apparently have not been studied. To carry out this study, four different types of sand have been used: dune sand (DS), river sand (RS), crushed sand (CS) and river-dune sand (RDS). These sands differ in mineralogical nature, grain shape, angularity, particle size, proportion of fine elements, etc. The obtained results show that the particle size distribution of sand has marked its influence in all the studied properties of sand concrete since the sand having the highest diameter and the best particle size distribution has given the best fracture and mechanical properties. The grain shape, the angularity and the nature of sand have also marked their influence: thanks to its angularity and its limestone nature, crushed sand yielded good results compared to river and dune sands which are characterized by rounded shape and siliceous nature. Finally, it should further be noted that the sand concrete presents values of fracture and mechanical properties slightly lower than those of ordinary concrete. Compared to mortar, although the mechanical strength is lower, the fracture parameters are almost comparable. In all cases, the sand grains are debonded from the paste cement during the fracture which means that the crack goes through the paste-aggregate interface.

Effect of curing condition on mechanical properties of scarf-repaired composite laminates

  • Cheng, Xiaoquan;Zhang, Jie;Cheng, Yujia;Guo, Xin;Huang, Wenjun
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.419-429
    • /
    • 2020
  • Composite structures are generally pressurized at both sides when repaired by the scarf repair method. But single-face vacuum bag curing (SVC) may be used in some practical scarf repair of penetration damage due to the low accessibility of composite structures, which can decrease bonding quality and may reduce structural mechanical properties. In this paper, experimental investigations were conducted on tensile and compressive properties of scarf-repaired composite laminates using SVC and double-face vacuum bag curing (DVC) in four hygrothermal environments. Finite element models of composite scarf joints with voids were established to further explore the failure mechanism of scarf-repaired laminates. Results show that the curing condition hardly affects tensile and compressive properties of the repaired laminates though it significantly affects the bonding quality with adhesive inner voids. Failure loads of scarf joints almost keep unchanged with adhesive voids increasing.

Experimental evaluation on comparative mechanical properties of Jute - Flax fibre Reinforced composite structures

  • Kumar, B. Ravi;Srimannarayana, C.H. Naga;Krishnan, K. Aniruth;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.515-520
    • /
    • 2020
  • In the modern era, the world is facing unprecedented challenges in form of environmental pollution and international agencies are forcing scientists and materialists to look for green materials and structures to counter this problem. Composites based on renewable sources like plant based fibres, vegetable fibres are finding increasing use in interior components of automobile vehicles, aircraft, and building construction. In the present study, jute and flax fibre based composites were developed and tested for assessing their suitability for possible applications in interior cabin and parts of automobile and aerospace vehicles. Matrix system involves epoxy as resin and fibre weight fractions used were 45% and 55% respectively. Composites samples were prepared as per American society for testing and materials (ASTM) standard and were tested for individual fiber tensile strength, composite tensile strength, and flexural strength to analyse its behavior under various loading conditions. The results revealed that the Jute fibre composites possess enhanced mechanical properties over Flax fibre composites.

Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.105-121
    • /
    • 2014
  • A fundamental limitation of steel structures is the decrease in their load-bearing capacity at high temperatures in fire situations such that structural members may require some additional treatment for fire resistance. In this regard, this paper evaluates the structural stability of fire-resistant steel, introduced in the late 1999s, through tensile coupon tests and proposes some experimental equations for the yield stress, the elastic modulus, and specific heat. The surface temperature, deflection, and maximum stress of fire-resistant steel H-section columns were calculated using their own mechanical and thermal properties. According to a comparison of mechanical properties between fire-resistant steel and Eurocode 3, the former outperformed the latter, and based on a comparison of structural performance between fire-resistant steel and ordinary structural steel of equivalent mechanical properties at room temperature, the former had greater structural stability than the latter through $900^{\circ}C$.

MEMS 소재의 기계적 특성 평가를 위한 인장형 시편 및 시험기 제작 (A Novel Tensile Specimen and Test Machine for Mechanical Properties of MEMS Materials)

  • 박준협;김정엽;이창승;좌성훈;송지호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.258-263
    • /
    • 2004
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of materials used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed an uniaxial testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, new techniques and procedures for measuring strength are described.

  • PDF

Mechanical Properties Prediction by Manufacturing Parameters for Braided Composites

  • Kim, Myungjun
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.25-31
    • /
    • 2020
  • The development of manufacturing technology for braided composites has led to farther extension of the applications in aerospace structures. Since the mechanical characteristics of braided composites are affected by various materials and manufacturing parameters, it is important to determine the parameters required to appropriately design the braided composite structures. In this study, we proposed a geometric model of RUC (repeating unit cell) for 2D braided composites, and predicted the mechanical properties according to the change of fiber volume fraction, fiber filament size, braiding angle, and gap between adjacent yarns by the yarn slicing technique and stress averaging method. Finally, we analyze the characteristics of mechanical properties according to each manufacturing parameter of the braided composite material.