• Title/Summary/Keyword: Structure tensor

Search Result 199, Processing Time 0.027 seconds

ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Chaubey, Sudhakar Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.303-319
    • /
    • 2019
  • The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally ${\phi}$-symmetric, ${\eta}$-parallel Ricci tensor and a non-null concircular vector field on $(LCS)_3$-manifolds.

DEGREE OF VERTICES IN VAGUE GRAPHS

  • BORZOOEI, R.A.;RASHMANLOU, HOSSEIN
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.545-557
    • /
    • 2015
  • A vague graph is a generalized structure of a fuzzy graph that gives more precision, flexibility and compatibility to a system when compared with systems that are designed using fuzzy graphs. In this paper, we define two new operation on vague graphs namely normal product and tensor product and study about the degree of a vertex in vague graphs which are obtained from two given vague graphs G1 and G2 using the operations cartesian product, composition, tensor product and normal product. These operations are highly utilized by computer science, geometry, algebra, number theory and operation research. In addition to the existing operations these properties will also be helpful to study large vague graph as a combination of small, vague graphs and to derive its properties from those of the smaller ones.

Improvement of IPS Mode Structure using Fast Q-tensor Method

  • Choi, Hyun-Chul;Lee, Joun-Ho;Choi, Seong-Wook;Yang, Jin-Seok;Lee, Gi-Dong
    • Journal of Information Display
    • /
    • v.8 no.2
    • /
    • pp.1-4
    • /
    • 2007
  • IPS and VA have evolved in various structures such as H-IPS, AS-IPS, and S-PVA gain more competitiveness. The new pixel structures inherently have more domains which cause disclination areas. The effect of disclination is no longer neglected in those structures. A new simulation tool based on FAST Q-tensor method enables one to predict the shape of disclinations and the resulting optical properties. It ensures more accurate results compared to vector-based simulation. We applied this simulation tool for the development of 26-inch wide monitor having H-IPS mode.

Blind signal separation for coprime planar arrays: An improved coupled trilinear decomposition method

  • Zhongyuan Que;Xiaofei Zhang;Benzhou Jin
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.138-149
    • /
    • 2023
  • In this study, the problem of blind signal separation for coprime planar arrays is investigated. For coprime planar arrays comprising two uniform rectangular subarrays, we link the signal separation to the tensor-based model called coupled canonical polyadic decomposition (CPD) and propose an improved coupled trilinear decomposition approach. The output data of coprime planar arrays are modeled as a coupled tensor set that can be further interpreted as a coupled CPD model, allowing a signal separation to be achieved using coupled trilinear alternating least squares (TALS). Furthermore, in the procedure of the coupled TALS, a Vandermonde structure enforcing approach is explicitly applied, which is shown to ensure fast convergence. The results of Monto Carlo simulations show that our proposed algorithm has the same separation accuracy as the basic coupled TALS but with a faster convergence speed.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

TORSION TENSOR FORMS ON INDUCED BUNDLES

  • Kim, Hyun Woong;Park, Joon-Sik;Pyo, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.793-798
    • /
    • 2013
  • Let ${\phi}$ be a map of a manifold M into another manifold N, L(N) the bundle of all linear frames over N, and ${\phi}^{-1}$(L(N)) the bundle over M which is induced from ${\phi}$ and L(N). Then, we construct a structure equation for the torsion form in ${\phi}^{-1}$(L(N)) which is induced from a torsion form in L(N).

HOMOGENEOUS $C^*$-ALGEBRAS OVER A SPHERE

  • Park, Chun-Gil
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.859-869
    • /
    • 1997
  • It is shown that for $A_{k, m}$ a k-homogeneous $C^*$-algebra over $S^{2n - 1} \times S^1$ such that no non-trivial matrix algebra can be factored out of $A_{k, m}$ and $A_{k, m} \otimes M_l(C)$ has a non-trivial bundle structure for any positive integer l, we construct an $A_{k, m^-} C(S^{2n - 1} \times S^1) \otimes M_k(C)$-equivalence bimodule to show that every k-homogeneous $C^*$-algebra over $S^{2n - 1} \times S^1)$. Moreover, we prove that the tensor product of the k-homogeneous $C^*$-algebra $A_{k, m}$ with a UHF-algebra of type $p^\infty$ has the tribial bundle structure if and only if the set of prime factors of k is a subset of the set of prime factors of pp.

  • PDF

REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES

  • Cho, Jong Taek;Chun, Sun Hyang
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.805-812
    • /
    • 2014
  • For unit tangent sphere bundles $T_1M$ with the standard contact metric structure (${\eta},\bar{g},{\phi},{\xi}$), we have two fundamental operators that is, $h=\frac{1}{2}{\pounds}_{\xi}{\phi}$ and ${\ell}=\bar{R}({\cdot},{\xi}){\xi}$, where ${\pounds}_{\xi}$ denotes Lie differentiation for the Reeb vector field ${\xi}$ and $\bar{R}$ denotes the Riemmannian curvature tensor of $T_1M$. In this paper, we study the Reeb ow invariancy of the corresponding (0, 2)-tensor fields H and L of h and ${\ell}$, respectively.

Blind Image Quality Assessment on Gaussian Blur Images

  • Wang, Liping;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.448-463
    • /
    • 2017
  • Multimedia is a ubiquitous and indispensable part of our daily life and learning such as audio, image, and video. Objective and subjective quality evaluations play an important role in various multimedia applications. Blind image quality assessment (BIQA) is used to indicate the perceptual quality of a distorted image, while its reference image is not considered and used. Blur is one of the common image distortions. In this paper, we propose a novel BIQA index for Gaussian blur distortion based on the fact that images with different blur degree will have different changes through the same blur. We describe this discrimination from three aspects: color, edge, and structure. For color, we adopt color histogram; for edge, we use edge intensity map, and saliency map is used as the weighting function to be consistent with human visual system (HVS); for structure, we use structure tensor and structural similarity (SSIM) index. Numerous experiments based on four benchmark databases show that our proposed index is highly consistent with the subjective quality assessment.