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DEGREE OF VERTICES IN VAGUE GRAPHS†

R.A. BORZOOEI∗ AND HOSSEIN RASHMANLOU

Abstract. A vague graph is a generalized structure of a fuzzy graph that
gives more precision, flexibility and compatibility to a system when com-
pared with systems that are designed using fuzzy graphs. In this paper, we
define two new operation on vague graphs namely normal product and ten-

sor product and study about the degree of a vertex in vague graphs which
are obtained from two given vague graphs G1 and G2 using the opera-
tions cartesian product, composition, tensor product and normal product.
These operations are highly utilized by computer science, geometry, alge-

bra, number theory and operation research. In addition to the existing
operations these properties will also be helpful to study large vague graph
as a combination of small, vague graphs and to derive its properties from

those of the smaller ones.

AMS Mathematics Subject Classification : 05C99.
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1. Introduction

Graphs and hypergraphs have been applied in a large number of problems
including cancer detection, robotics, human cardiac functions, networking and
designing. It was Zadeh [25] who introduced fuzzy sets and fuzzy logic into
mathematics to deal with problems of uncertainty. As most of the phenomena
around us involve much of ambiguity and vagueness, fuzzy logic and fuzzy math-
ematics have to play a crucial role in modeling real time systems with some level
of uncertainty. The most important feature of a fuzzy set is that a fuzzy set A is
a class of objects that satisfy a certain (or several) property. Gau and Buehrer
[5] proposed the concept of vague set in 1993, by replacing the value of an ele-
ment in a set with a subinterval of [0, 1]. Namely, a true-membership function
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tv(x) and a false membership function fv(x) are used to describe the bound-
aries of the membership degree. The initial definition given by Kaufmann [6] of
a fuzzy graph was based on the fuzzy relation proposed by Zadeh [26]. Later
Rosenfeld [15] introduced the fuzzy analogue of several basic graph-theoretic
concepts. Mordeson and Nair [7] defined the concept of complement of fuzzy
graph and studied some operations on fuzzy graphs. Akram et al. [2, 3, 4]
introduced vague hypergraphs, certain types of vague graphs and regularity in
vague intersection graphs and vague line graphs . Ramakrishna [9] introduced
the concept of vague graphs and studied some of their properties. Pal and
Rashmanlou [8] studied irregular interval-valued fuzzy graphs. Also, they de-
fined antipodal interval-valued fuzzy graphs [10], balanced interval-valued fuzzy
graphs [11], some properties of highly irregular interval-valued fuzzy graphs [12]
and a study on bipolar fuzzy graphs [14]. Rashmanlou and Yang Bae Jun in-
vestigated complete interval-valued fuzzy graphs [13]. Samanta and Pal defined
fuzzy tolerance graphs [16], fuzzy threshold graphs [17], fuzzy planar graphs
[18], fuzzy k-competition graphs and p-competition fuzzy graphs [19], irregular
bipolar fuzzy graphs [20], fuzzy coloring of fuzzy graphs [21]. In this paper, we
defined two new operation on vague graphs namely normal product and tensor
product and studied about the degree of a vertex in vague graphs which are
obtained from two given vague graphs G1 and G2 using the operations cartesian
product, composition, tensor product and normal product. For further details,
reader may look into [1, 22, 23, 24].

2. Preliminaries

By a graph G∗ = (V,E), we mean a non-trivial, finite, connected and undi-
rected graph without loops or multiple edges. Formally, given a graph G∗ =
(V,E), two vertices x, y ∈ V are said to be neighbors, or adjacent nodes, if
xy ∈ E. A fuzzy subset µ on a set X is a map µ : X → [0, 1]. A fuzzy binary re-
lation on X is a fuzzy subset µ on X×X. A fuzzy graph G is a pair of functions
G = (σ, µ) where σ is a fuzzy subset of a non-empty set V and µ : V ×V → [0, 1]
is a symmetric fuzzy relation on σ, i.e. µ(uv) ≤ σ(u) ∧ σ(v). The degree of a
vertex u in fuzzy graph G is defined by dG(u) =

∑
u̸=v µ(uv) =

∑
uv∈E µ(uv).

The order of a fuzzy graph G is defined by O(G) =
∑

u∈V σ(u).
The main objective of this paper is to study of vague graph and this graph is

based on the vague set defined below.

Definition 2.1 ([5]). A vague set on an ordinary finite non-empty setX is a pair
(tA, fA), where tA : X → [0, 1], fA : X → [0, 1] are true and false membership
functions, respectively such that 0 ≤ tA(x)+fA(x) ≤ 1, for all x ∈ X. Note that
tA(x) is considered as the lower bound for degree of membership of x in A and
fA(x) is the lower bound for negative of membership of x in A. So, the degree of
membership of x in the vague set A is characterized by interval [tA(x), 1−fA(x)].
Let X and Y be ordinary finite non-empty sets. We call a vague relation to be
a vague subset of X × Y , that is an expression R defined by
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R = {⟨(x, y), tR(x, y), fR(x, y)⟩ | x ∈ X, y ∈ Y }
where tR : X × Y → [0, 1], fR : X × Y → [0, 1], which satisfies the condition
0 ≤ tR(x, y) + fR(x, y) ≤ 1, for all (x, y) ∈ X × Y .

Definition 2.2 ([9]). Let G∗ = (V,E) be a crisp graph. A pair G = (A,B)
is called a vague graph on a crisp graph G∗ = (V,E), where A = (tA, fA) is a
vague set on V and B = (tB, fB) is a vague set on E ⊆ V × V such that

tB(xy) ≤ min(tA(x), tA(y)) and fB(xy) ≥ max(fA(x), fA(y))

for each edge xy ∈ E.
If G is a vague graph, then the order of G is defined and denoted as

O(G) =

(∑
u∈V

tA(u),
∑
u∈V

fA(u)

)
and the size of G is

S(G) =

 ∑
u̸=vu,v∈V

tB(uv),
∑

u̸=vu,v∈V

fB(uv)

 .

The open degree of a vertex u in a vague graph G = (A,B) is defined as d(u) =(
dt(u), df (u)

)
where dt(u) =

∑
u̸=v

u,v∈V
tB(uv) and df (u) =

∑
u̸=v

u,v∈V
fB(uv). If all

the vertices have the same open neighborhood degree n, then G is called an
n-regular vague graph.

Definition 2.3. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2) respectively.

(1) The cartesian product G1×G2 of G1 and G2 is defined as pair (A1×A2, B1×
B2) such that

(i)

{
(tA1 × tA2)(u1, u2) = min(tA1(u1), tA2(u2))

(fA1 × fA2)(u1, u2) = max(fA1(u1), fA2(u2))
for all (u1, u2) ∈ V1 × V2

(ii)

{
(tB1 × tB2)((u, u2)(u, v2)) = min(tA1(u), tB2(u2v2))

(fB1 × fB2)((u, u2)(u, v2)) = max(fA1(u), fB2(u2v2))

for all u ∈ V1 and u2v2 ∈ E2,

(iii)

{
(tB1 × tB2)((u1, z)(v1, z)) = min(tB1(u1v1), tA2(z))

(fB1 × fB2)((u1, z)(v1, z)) = max(fB1(u1v1), fA2(z))

for all z ∈ V2 and u1v1 ∈ E1.

(2) The composition G1 ◦G2 of G1 and G2 is defined as pair (A1 ◦A2, B1 ◦B2)
such that
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(i)

{
(tA1 ◦ tA2)(u1, u2) = min(tA1(u1), tA2(u2))

(fA1 ◦ fA2)(u1, u2) = max(fA1(u1), fA2(u2))
for all (u1, u2) ∈ V1 × V2

(ii)

{
(tB1 ◦ tB2)((u, u2)(u, v2)) = min(tA1(u), tB2(u2v2))

(fB1 ◦ fB2)((u, u2)(u, v2)) = max(fA1(u), fB2(u2v2))

for all u ∈ V1 and u2v2 ∈ E2,

(iii)

{
(tB1 ◦ tB2)((u1, z)(v1, z)) = min(tB1(u1v1), tA2(z))

(fB1 ◦ fB2)((u1, z)(v1, z)) = max(fB1(u1v1), fA2(z))

for all z ∈ V2 and u1v1 ∈ E1,

(iv)

{
(tB1 ◦ tB2)((u1, u2)(v1, v2)) = min(tA2(u2), tA2(v2), tB1(u1v1))

(fB1
◦ fB2

)((u1, u2)(v1, v2)) = max(fA2
(u2), fA2

(v2), fB1
(u1v1))

for all (u1, u2)(v1, v2) ∈ E◦ − E,

where E◦ = E ∪ {(u1, u2)(v1, v2) | u1v1 ∈ E1, u2 ̸= v2}.

3. Degree of vertices in vague graphs

Operation in fuzzy graph is a great tool to consider large fuzzy graph as
a combination of small fuzzy graphs and to derive its properties from those
of the smaller ones. Also, they are conveniently used in many combinatorial
applications. In various situations they present a suitable construction means.
For example in partition theory we deal with complex objects. A typical such
object is a fuzzy graph and a fuzzy hypergraph with large chromatic number
that we do not know how to compute exactly the chromatic number of these
graphs. In such cases, these operations have the main role in solving problems.
Hence, in this section, at first we define two new operations on vague graphs
namely normal product and tensor product. Then we study about the degree
of a vertex in vague graphs which are obtained from two given vague graphs G1

and G2 using the operations cartesian product, composition, tensor product and
normal product.

Definition 3.1. The normal product of two vague graphs Gi = (Ai, Bi) on
Gi = (Vi, Ei), i = 1, 2 is defined as a vague graph (A1 • A2, B1 • B2) on G =
(V,E) where V = V1 × V2 and E = {((u, u2)(u, v2)) | u ∈ V1, u2v2 ∈ E2} ∪
{((u1, z)(v1, z)) | u1v1 ∈ E1, z ∈ V2}∪{((u1, u2)(v1, v2)) | u1v1 ∈ E1, u2v2 ∈ E2}
such that:

(i)

{
(tA1 • tA2)(u1, u2) = min(tA1(u1), tA2(u2))

(fA1 • fA2)(u1, u2) = max(fA1(u1), fA2(u2))
for all (u1, u2) ∈ V1 × V2,

(ii)

{
(tB1 • tB2)((u, u2)(u, v2)) = min(tA1(u), tB2(u2v2))

(fB1 • fB2)((u, u2)(u, v2)) = max(fA1(u), fB2(u2v2))

for all u ∈ V1 and u2v2 ∈ E2,
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(iii)

{
(tB1 • tB2)((u1, z)(v1, z)) = min(tB1(u1v1), tA2(z))

(fB1 • fB2)((u1, z)(v1, z)) = max(fB1(u1v1), fA2(z))

for all z ∈ V2 and u1v1 ∈ E1,

(iv)

{
(tB1 • tB2)((u1, u2)(v1, v2)) = min(tB1(u1v1), tB2(u2v2))

(fB1 • fB2)((u1, u2)(v1, v2)) = max(fB1(u1v1), fB2(u2v2))

for all u1v1 ∈ E1 and u2v2 ∈ E2.

Definition 3.2. The tensor product of two vague graphs Gi = (Ai, Bi) on Gi =
(Vi, Ei), i = 1, 2, is defined as a vague graph (A1 ⊗A2, B1 ⊗B2) on G = (V,E)
where V = V1 × V2 and E = {(u1, u2), (v1, v2) | u1v1 ∈ E1, u2v2 ∈ E2} such
that

(i)

{
(tA1 ⊗ tA2)(u1, u2) = min(tA1(u1), tA2(u2))

(fA1 ⊗ fA2)(u1, u2) = max(fA1(u1), fA2(u2))
for all (u1, u2) ∈ V1 × V2,

(ii)

{
(tB1

⊗ tB2
)((u1, u2)(v1, v2)) = min(tB1

(u1v1), tB2
(u2v2))

(fB1 ⊗ fB2)((u1, u2)(v1, v2)) = max(fB1(u1v1), fB2(u2v2))

for all u1v1 ∈ E1 and u2v2 ∈ E2.

Now, we derive degree of a vertex in the cartesian product. By the definition
of cartesian product for any vertex (u1, u2) ∈ V1 × V2,

dtG1×G2
(u1, u2) =

∑
(u1,u2)(v1,v2)∈E

(tB1 × tB2)((u1, u2)(v1, v2))

=
∑

u1=v1,u2v2∈E2

tA1(u1) ∧ tB2(u2v2)

+
∑

u2=v2,u1v1∈E1

tA2(u2) ∧ tB1(u1v1)

dfG1×G2
(u1, u2) =

∑
(u1,u2)(v1,v2)∈E

(fB1 × fB2)((u1, u2)(v1, v2))

=
∑

u1=v1,u2v2∈E2

fA1
(u1) ∨ fB2

(u2v2)

+
∑

u2=v2,u1v1∈E1

fA2(u2) ∨ fB1(u1v1).

Theorem 3.3. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs. If
tA1 ≥ tB2 , fA1 ≤ fB2 and tA2 ≥ tB1 , fA2 ≤ fB1 then

dG1×G2(u1, u2) = dG1(u1) + dG2(u2).

Proof. From the definition of a vertex in the cartesian product we have

dtG1×G2
(u1, u2) =

∑
u1=v1,u2v2∈E2

tA1(u1) ∧ tB2(u2v2)



550 R.A. Borzooei and H. Rashmanlou

Figure 1. Cartesian product of G1 and G2

+
∑

u2=v2,u1v1∈E1

tA2(u2) ∧ tB1(u1v1)

=
∑

u2v2∈E2

tB2(u2v2) +
∑

u1v1∈E1

tB1(u1v1)

= dtG1
(u1) + dtG2

(u2).

Also we have

dfG1×G2
(u1, u2) =

∑
u1=v1,u2v2∈E2

fA1(u1) ∨ fB2(u2v2)

+
∑

u2=v2,u1v1∈E1

fA2(u2) ∨ fB1(u1v1)

=
∑

u2v2∈E2

fB2(u2v2) +
∑

u1v1∈E1

fB1(u1v1)

= dfG1
(u1) + dfG2

(u2).

Hence, dG1×G2(u1, u2) = dG1(u1) + dG2(u2). �

Example 3.4. Consider the vague graphs G1, G2 and G1 ×G2 as follows.
Since tA1 ≥ tB2 , fA1 ≤ fB2 , tA2 ≥ tB1 and fA2 ≤ fB1 . By Theorem 3.3, we

have

dtG1×G2
(u1, u2) = dtG1

(u1) + dtG2
(u2) = 0.3 + 0.2 = 0.5,

dfG1×G2
(u1, u2) = dfG1

(u1) + dfG2
(u2) = 0.6 + 0.6 = 1.2.
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So, dG1×G2(u1, u2) = (0.5, 1.2).

dtG1×G2
(u1, v2) = dtG1

(u1) + dtG2
(v2) = 0.3 + 0.2 = 0.5,

dfG1×G2
(u1, v2) = dfG1

(u1) + dfG2
(v2) = 0.6 + 0.6 = 1.2.

Hence, dG1×G2(u1, v2) = (0.5, 1.2).
Similarly, we can find the degrees of all the vertices in G1 ×G2. This can be

verified in the Figure 1.
Now we calculate the degree of a vertex in composition. By the definition of

composition for any vertex (u1, u2) ∈ V1 × V2 we have

dtG1◦G2
(u1, u2) =

∑
(u1,u2)(v1,v2)∈E

(tB1 ◦ tB2)((u1, u2)(v1, v2))

=
∑

u1=v1,u2v2∈E2

tA1(u1) ∧ tB2(u2v2)

+
∑

u2=v2,u1v1∈E1

tA2(u2) ∧ tB1(u1v1)

+
∑

u2 ̸=v2,u1v1∈E1

tA2
(v2) ∧ tA2

(u2) ∧ tB1
(u1v1)

dfG1◦G2
(u1, u2) =

∑
(u1,u2)(v1,v2)∈E

(fB1 ◦ fB2)((u1, u2)(v1, v2))

=
∑

u1=v1,u2v2∈E2

fA1(u1) ∨ fB2(u2v2)

+
∑

u2=v2,u1v1∈E1

fA2(u2) ∨ fB1(u1v1)

+
∑

u2 ̸=v2,u1v1∈E1

fA2(v2) ∨ fA2(u2) ∨ fB1(u1v1).

Theorem 3.5. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs.
If tA1 ≥ tB2 , fA1 ≤ fB2 , tA2 ≥ tB1 and fA2 ≤ fB1 , then dG1◦G2(u1, u2) =
|V2|dG1(u1) + dG2(u2) for all (u1, u2) ∈ V1 × V2.

Proof.

dtG1◦G2
(u1, u2) =

∑
u1=v1,u2v2∈E2

tA1(u1) ∧ tB2(u2v2)

+
∑

u2=v2,u1v1∈E1

tA2(u2) ∧ tB1(u1v1)

+
∑

u2 ̸=v2,u1v1∈E1

tA2(v2) ∧ tA2(u2) ∧ tB1(u1v1)

=
∑

u2v2∈E2

tB2(u2v2) +
∑

u2=v2,u1v1∈E1

tB1(u1v1)
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Figure 2. Composition of G1 and G2

+
∑

u2 ̸=v2,u1v1∈E1

tB1(u1v1) (Since tA1 ≥ tB2 and tA2 ≥ tB1)

= dtG2
(u2) + |V2|

∑
u1v1∈E1

tB1(u1v1)

= dtG2
(u2) + |V2|dtG1

(u1).

Similarly we can show that

dfG1◦G2
(u1, u2) = dfG2

(u2) + |V2|dfG1
(u1).

Hence, dG1◦G2(u1, u2) = dG2(u2) + |V2|dG1(u1). �

Example 3.6. Consider the vague graphs G1, G2 and G1 ◦G2 as follows.

Here, tA1 ≥ tB2 , fA1 ≤ fB2 , tA2 ≥ tB1 and fA2 ≤ fB1 . By Theorem 3.5, we
have

dtG1◦G2
(u1, u2) = dtG2

(u2) + |V2|dtG1
(u1) = 0.2 + 2(0.2) = 0.6,

dfG1◦G2
(u1, u2) = dfG2

(u2) + |V2|dfG1
(u1) = 0.7 + 2(0.7) = 2.1.

Therefore, dG1◦G2
(u1, u2) = (0.6, 2.1).

dtG1◦G2
(u1, v2) = dtG2

(v2) + |V2|dtG1
(u1) = 0.2 + 2(0.2) = 0.6,

dfG1◦G2
(u1, v2) = dfG2

(v2) + |V2|dfG1
(u1) = 0.7 + 2(0.7) = 2.1.

So, dG1◦G2(u1, v2) = (0.6, 2.1).
In the same way, we can find the degree of all the vertices in G1 ◦ G2. This

can be verified in the Figure 2.
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Figure 3. Tensor product of G1 and G2

Degree of a vertex in the tensor product is as follows.
By definition of tensor product for any (u1, u2) ∈ V1 × V2 we have

dtG1⊗G2
(u1, u2) =

∑
(tB1⊗tB2)((u1, u2)(v1, v2)) =

∑
u1v1∈E1

tB1(u1v1)∧tB2(u2v2)

dfG1⊗G2
(u1, u2) =

∑
(fB1⊗fB2)((u1, u2)(v1, v2)) =

∑
u1v1∈E1

fB1(u1v1)∨fB2(u2v2).

Theorem 3.7. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs. If
tB2 ≥ tB1 and fB2 ≤ fB1 then dG1⊗G2(u1, u2) = dG1(u1). Also, if tB1 ≥ tB2 and
fB1 ≤ fB2 then dG1⊗⊗G2(u1, u2) = dG2(u2).

Proof. Let tB2 ≥ tB1 , fB2 ≤ fB1 then we have

dtG1⊗G2
(u1, u2) =

∑
u1v1∈E1

tB1(u1v1) ∧ tB2(u2v2) =
∑

tB1(u1v1) = dtG1
(u1),

dfG1⊗G2
(u1, u2) =

∑
u1v1∈E1

fB1(u1v1) ∨ fB2(u2v2) =
∑

fB1(u1v1) = dfG1
(u1).

Hence, dG1⊗G2(u1, u2) = dG1(u1). Similarly if tB1 ≥ tB2 and fB1 ≤ fB2 , then
dG1⊗G2(u1, u2) = dG2(u2). �
Example 3.8. In this example we obtain the degree of vertices of G1 ⊗G2 by
Theorem 3.7.

Consider the vague graphs G1 and G2 in Figure 3. Here tB2 ≥ tB1 , fB2 ≤ fB1 .
By Theorem 3.7 we have

dtG1⊗G2
(u1, u2) = dtG1

(u1) = 0.2, dfG1⊗G2
(u1, u2) = dfG1

(u1) = 0.5,
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dtG1⊗G2
(v1, v2) = dtG1

(v1) = 0.2, dfG1⊗G2
(v1, v2) = dfG1

(v1) = 0.5.

So, dG1⊗G2(u1, u2) = (0.2, 0.5) and dG1⊗G2(v1, v2) = (0.2, 0.5). Similarly, we
can find the degree of all the vertices in G1 ⊗ G2. This can be verified in the
Figure 3.

Finally, we derive the degree of a vertex in normal product. By the definition
of normal product for any (u1, u2) ∈ V1 × V2 we have

dtG1•G2
(u1, u2) =

∑
((u1,v1)(u2,v2))∈E

(tB1 • tB2)((u1, v1)(u2, v2))

=
∑

u1=v1,u2v2∈E2

tA1(u1) ∧ tB2(u2v2)

+
∑

u2=v2,u1v1∈E1

tA2
(u2) ∧ tB1

(u1v1)

+
∑

u2v2∈E2,u1v1∈E1

tB2(u2v2) ∧ tB1(u1v1),

dfG1•G2
(u1, u2) =

∑
((u1,v1)(u2,v2))∈E

(fB1 • fB2)((u1, v1)(u2, v2))

=
∑

u1=v1,u2v2∈E2

fA1(u1) ∨ fB2(u2v2)

+
∑

u2=v2,u1v1∈E1

fA2(u2) ∨ fB1(u1v1)

+
∑

u2v2∈E2,u1v1∈E1

fB2(u2v2) ∨ fB1(u1v1).

Theorem 3.9. Let G1 = (A1, B1) and G2 = (A2, B2) be two vague graphs. If
tA1 ≥ tB2 , fA1 ≤ fB2 , tA2 ≥ tB1 , fA2 ≤ fB1 , tB1 ≤ tB2 and fB1 ≥ fB2 then
dG1•G2(u1, u2) = |V2|dG1(u1) + dG2(u2).

Proof.

dtG1•G2
(u1, u2) =

∑
((u1,v1)(u2,v2))∈E

(tB1 • tB2)((u1, v1)(u2, v2))

=
∑

u1=v1,u2v2∈E2

tA1(u1) ∧ tB2(u2v2)

+
∑

u2=v2,u1v1∈E1

tA2(u2) ∧ tB1(u1v1)

+
∑

u2v2∈E2,u1v1∈E1

tB2(u2v2) ∧ tB1(u1v1)

=
∑

u2v2∈E2

tB2(u2v2) +
∑

u2=v2,u1v1∈E1

tB1(u1v1)
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Figure 4. Normal product of G1 and G2

+
∑

u1v1∈E1

tB1(u1v1), (Since tA1 ≥ tB2 , tA2 ≥ tB1 , tB1 ≤ tB2)

= dtG2
(u2) + |V2|dtG1

(u1).

In the same way we can show that

dfG1•G2
(u1, u2) = dfG2

(u2) + |V2|dfG1
(u1).

Hence, dG1•G2(u1, u2) = |V2|dG1(u1) + dG2(u2). �

Example 3.10. In this example we obtain the degree of vertices of G1 •G2 by
Theorem 3.9.

Consider the vague graphs G1 and G2 in Figure 4. Here tA1 ≥ tB2 , fA1 ≤ fB2 ,
tA2 ≥ tB1 , fA2 ≤ fB1 , tB1 ≤ tB2 and fB1 ≥ fB2 . So, by Theorem 3.9 we have

dtG1•G2
(u1, u2) = dtG2

(u2) + |V2|dtG1
(u1) = 0.2 + 2(0.2) = 0.6,

dfG1•G2
(u1, u2) = dfG2

(u2) + |V2|dfG1
(u1) = 0.6 + 2(0.7) = 2.

Therefore, dG1•G2(u1, u2) = (0.6, 2).

dtG1•G2
(u1, v2) = dtG2

(v2) + |V2|dtG1
(u1) = 0.2 + 2(0.2) = 0.6,

dfG1•G2
(u1, v2) = dfG2

(v2) + |V2|dfG1
(u1) = 0.6 + 2(0.7) = 2.

So, dG1•G2(u1, v2) = (0.6, 2).
Similarly, we can find the degree of all the vertices in G1 • G2. This can be

verified in the Figure 4.
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4. Conclusion

Graph theory has several interesting applications in system analysis, opera-
tions research, computer applications, and economics. Since most of the time
the aspects of graph problems are uncertain, it is nice to deal with these as-
pects via the methods of fuzzy systems. It is known that fuzzy graph theory
has numerous applications in modern science and engineering, neural networks,
expert systems, medical diagnosis, town planning and control theory. In this
paper, we have found the degree of vertices in G1 ×G2, G1 ◦G2, G1 ⊗G2 and
G1 •G2 in terms of the degree of vertices in G1 and G2 under some conditions
and illustrated them through examples. This will be helpful when the graphs are
very large and it can help us in studying various properties of cartesian product,
composition, tensor product and normal product of two vague graphs.
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