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ON REAL HYPERSURFACES OF A COMPLEX
SPACE FORM IN TERMS OF JACOBI OPERATORS

U-HANG K1, AN-AYE LEE AND SEONG-BAEK LEE

ABSTRACT. We study real hypersurfaces of a complex space form
such that the Jacobi operator with respect to the structure vector
field and the structure tensor ¢ on the real hypersurface commute.

0. Introduction

A Kaehlerian manifold of constant holomorphic sectional curvature ¢
is called a complex space form, which is denoted by M,,(¢). The complete
and simply connected complex space form is a complex projective space
P,C, a complex Euclidean space C,,, or a complex hyperbolic space H,,C
according as ¢ > 0,c=0or ¢ < 0.

The induced almost contact metric structure of a real hypersurface
M of M,(c) will be denoted by (¢, g,€,m). The structure vector field ¢
is said to be principal if AL = o€, where A is the shape operator in the
direction of the unit normal C' and « = n( A¢).

Typical examples of real hypersurfaces in P, C are homogeneous one.
Takagi ([23]) classified homogeneous real hypersurfaces of a complex pro-
jective space P, C as the following six types.

THEOREM A. Let M be a homogeneous real hyperspace of P,C.
Then M is locally congruent to one of the followings:

(A1) ageodesic hypersphere (that is, a tube over a hyperplane P,,_1C),
(A2) a tube over a totally geodesic P,C(1 < k <In —2),
(B) a tube over a complex quadric Q,,_1,
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(C) a tube over P,C x P,—1),2C and n(> 5) is odd,

(D) a tube over a complex Grassman G 5C and n =9,

(E) a tube over a Hermitian symmetric space SO(10)/U(5) and n =
15.

This result is generalized by many authors ([2], [4], [12], [15], [16], [22]
and [23] etc.). One of them, Kimura ([12]) asserts that M has constant
principal curvatures and the structure vector field ¢ is principal if and
only if M is locally congruent to a homogeneous real hypersurface.

On the other hand, real hypersurface of H,,C have been also inves-
tigated by many geometers ([9], [10], [18] and [19] etc.) from different
points of view. In particular, Berndt ([3]) proved the following:

THEOREM B. Let M be a real hypersurface of H,C. Then M has
constant principal curvatures and § is principal if and only if M is locally
congruent to one of the followings:

(Ap) a self-tube, that is, a horosphere,
(A1) a geodesic hypersphere or a tube over a hvperplane H,,_;C,
(A2) a tube over a totally geodesic HyC(1 < k < n — 2),

(B) a tube over a totally real hyperbolic space H,R.

Let M be a real hypersurface of type A, or type A, in a complex pro-
Jective space P,C or that of type Ag, A; or Az in a complex hyperbolic
space H,,C'. Then M is said to be of type A for simplicity. By a theorem
due to Okumura ([20]) and to Montiel and Romero ([19]) we have (see
also Ki [7])

THEOREM C. If the shape operator A and the structure tensor ¢
commute to each other, then a real hypersurface of a complex space
form My (c), ¢ # 0 is locally congruent to be of type A.

We denote by V the Levi-Civita connection with respect to the metric
tensor g. The curvature tensor field R on M is defined by R(X,Y) =
[Vx,Vy]=V|x,y), where X and Y are vector fields on M. We define the
Jacobi operator field Rx = R(-, X)X with respect to a unit vector field
X. Then we see that Rx is a self-adjoint endomorphism of the tangent
space. It is well-known that the notion of Jacob: vector fields imvolve
many important geometric properties. In the preceding work ([6]), we
prove the following:
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THEOREM D. Let M be a connected real hypersurface of a complex
projective space P,C. If M satisfies RepA = A¢R¢, then M is locally
congruent to one of the following spaces:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyper-
plane P,,_1C, where 0 <r < T);

(A2) a tube of radius r over a totally geodesic P,C(0 < k <n —1),
where 0 <r < 3.

In this paper we study some real hypersurfaces in a complex space
form M, (c),c # 0 in terms of the Jacobi operator, the structure tensor
¢ and the Jacobi operator R with respect to the structure vector field
&, and improve above Theorem D.

All manifolds in this paper are assumed to be connected and of class
C® and the real hypersurfaces are supposed to be orientable.

1. Preliminaries

Let M,,(c) be a real 2n-dimensional complex space form equipped with
parallel almost complex structure J and a Riemannian metric tensor G
which is J-Hermitian, and covered by a system of coordinate neighbor-
hoods {W;z4}.

Let M be a real (2n-1)-dimensional hypersurface of M,,(c) covered
by a system of coordinate neighborhoods {V;y"} and immersed isomet-
rically in M, (c¢) by the immersion i : M — M,(c). Throughout the
present paper the following convention on the range of indices are used,
unless otherwise stated:

A)B’,,,:l’z’...72n; Z‘]’_—.].’Q,’zn—l

The summation convention will be used with respect to those system of
indices. When the argument is local, M need not be distinguished from
i(M). Thus, for simplicity, a point p in M may be identified with the
point i(p) and a tangent vector X at p may also be identified with the
tangent vector 7,(X) at i(p) via the differential ¢, of 7. We represent
the immersion i locally by x4 = z4(y") and B; = (BjA) are also (2n-
1)-linearly indenpendent local tangent vectors of M, where B; A= 8]-:5‘4
and 8; = 8/9y’. A unit normal C to M may then be chosen. The
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induced Riemannian metric g with components g5: on M is given by
g;: =Gp AB]-B BZ-A because the immersion is isometric.

For the unit normal C to M, the following representations are ob-
tained in each coordinate neighborhood:

(1.1) JB; = ¢,"B, + &C, JC = —-¢'B,,

where we have put ¢;; = G(JB;,B;) and &; = G(JB;,C),&" being
components of a vector field £ associated with ¢; and ®ji = ¢;"9gri- By
the properties of the almost Hermitian structure ./ , it is clear that ¢;; is
skew-symmetric. A tensor field of type (1,1) with components & will
be denoted by ¢. By the properties of the almost complex structure J,
the following relations are then given:

¢ir¢rh — _51:11, + €i€h, 67'¢Th — 0’ §r¢iT - 0’ 5152 — 1,

that is, the aggregate (¢, g, €) defines an almost contact metric structure.

Denoting by V; the operator of van der Waerdern-Bortolotti covariant
differentiation with respect to the induced Riemannian metric, equations
of the Gauss and Weingarten for M are respectively obtained:

(1.2) ViBi = A;C, V;C=-Al"B,

where H = (A;;) is a second fundamental form and A = (Ajh), which is
related by A;; = A;"gr; is the shape operator derived from C. By means

of (1.1) and (1.2) the covariant derivatives of the structure tensors are
yielded:

(1.3) Vi = —Ajeh + A&, V&= -A50,

Since the ambient space is complex space form. equations of the Gauss
and Codazzi for M are respectively given by

(1.4)
(9knGji — 9inghi + Grndji — Ginde: — 20k bin)
+ Apn Ay — AjnAg,

Rijin =

=10
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c , ‘ ,
(1.5) ViAji = V;Ap = Z(fk@ji — & Oki — 25iPk;5),

where Ry;in are components of the Riemannian curvature tensor R of
M.

In what follows, to write our formulas in convention forms, we denote
by Ajf = A;r A" h = gjiAji,a = Aj,-fjfi and § = Aji2§j§i. If we
put U; = £"V,.§;, then U is orthogonal to the structure vector field &.
Because of the properties of the almost contact metric structure and the
second equation of (1.3), we can get

(1.6) ¢rU" = Ajr€" — agj,

which shows that g(U,U) = 8 — o?.
From (1.3), we have

(1.7) ViVi&i = (A;r€7) Aki — Ajk2§i — (ViAjr)ei",

By the definition of U and the second equation of (1.3), we easily see
that

(1.8) U™V = A;,28 — ad;E.

On the other hand, differentiating (1.6) covariantly along M and mak-
ing use of (1.3), we find

(1.9) §jAkTUT + qurka'r = frvajr — AjTAksd)rs — akﬁj + aAkr(bjr,
which shows that
(1.10) (VA8 = 2A,,U" + ag,

where o = Oca. _
Transforming (1.9) by ¢,” and making use of (1.3) and (1.8), we find

(111) VUi + &AL + 67 (ViAo )" = (Vi€ ) (Vi) + adii,
which together with (1.3) and (1.10) yields

(1.12) &Terj = -3U8Ars¢jT + aAj"£T - ngj - d)jTaT‘
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We put
(1.13) A€’ = af; + uWj,

where W is a unit vector field orthogonal to £. Then by (1.6) we see that
U = upW, and W is also orthogonal to U, and we have u? = 3—a?. We
assume that p # 0 on M, that is, £ is not a principal curvature vector
field and we put {2 = {p € M|u(p) # 0}. Then 2 is an open subset of
M and from now on we discuss our argument on Q.

Since we have U; = u¢,;W", we can, using (1.3), verify that

(1.14) pET W, = AU

because £ and W are mutually orthogonal.

2. Real hypersurfaces satisfying R;¢ = ¢R;

Let M be a real hypersurface of a complex space form M, (c),c # 0.
Then from (1.4) we have

c

(Re)ji = §

Suppose that K¢¢ = ¢R,. Then we obtain

(950 — &&) + adji — (A;r€7)(Ail”).

(21) a(Ajrcbir + Az‘,«(}ﬁjr) + UiAjrér + Uinrfr = (.
Transforming by U*, we have
(2.2) U Aerd)” = A} 267 — NAG €T,

where we have put 8 = aA. Thus, because of properties of the almost
contact metric structure it is seen that

(2.3) —ETA,26 = AU+ U

Applying (2.1) by V£’ and using the second equation of (1.3) and
(1.6), we find

a(V;E) V&) + aAji2 = (Ajr2€r)(Ais€s) - U;A;. U™,
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Substituting this into (1.11), we get

(2.4)
vk:Uj + (Akr?gr)gj - = gr(VkAsr)C,bjs + Oé/ljk — Aij

1
B E{UjAkTUT - (Akrzér)(Ajsgs)}

since a # 0 on Q.
In what follows, we suppose that

AT = 04, + 7€,

for some function 6 and 7 on M. Then we have a(A — 0) = 7 and hence
(2.5) AP =048 +a(X—0)&

From this and (1.13), we see that
(2.6) AW = i+ (8 — )W,
because 1 # 0 on 2 and consequently
(2.7) AW = 08¢ + (Aa + 6% — 220\ W;.

Differentiating (2.6) covariantly along €2, we find

(2.8) (VkAjr)Wr + AerkWT =
el + Vi€ + (6 — ak)Wj + (0 — O,)VkVVj,

which enables us to obtain

(Vi Ars) WW?E + p&"Vi W, = uW' Vi, + 0 — o
or using (1.14)
(2.9) (VA GWTW?® = =24, U" + 6, - a;

because £ and W are mutually orthogonal.
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Transvecting (2.8) with &7, we also have
(2.10) (VA WTE = (6 — 20) ApeU” + pupu,

which together with the Codazzi equation (1.5)
c
(2.11) /L(VrAks)Wrﬁs = (9 — 2a)AkTUT - iUk + k.

From (2.3) and (2.5), we obtain
(2.12) AU = (6 — AU,
Hence, (1.12) turns out to be
(2.13) VU = (BA =30+ a)uW; — a(A — )5 — ¢pjra”

with the aid of (1.13).
Differentiating (2.12) covariantly along €2, we find

(2.14) (VkAjr)Ur + AerkUT = (O — /\k)Uj + (0 — )\)VkUj,
which together with (2.13) implies that

(ViAjr)E*UT = {dB(€) — dA(€)}U;
— (3X =30+ o) u{A;; W" — (6 — \)W,}
+ Ot()\ - a){Aj'r‘gT - (9 - /\)63} + A~‘:T¢rsas - (0 - A)d)jTaT’

where df(§) = 6,£'. If we use (1.5), then above equation can be written
as

(Vo Au)UTE = JuW; + {d0(E) - AU
— (38X =30 + a)u{ A W™ — (6 — )W)
+ (A — ) { A" — (6 — NE} + A drsa® = (6 — N gira”.
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Transforming for ¢,* and taking account of (1.6), (1.13) and (2.6), we
can get

3
(A =0~ a)U; + b

— a(A = Q)U; + {d6(€) — dA(E)}uW;
— AT drsa’¢; + (6 — Mo, — da(€)g;},
or, using (1.6), (1.13) and (2.1),

; (&4
(V,—Ais)UTEs(ﬁjz = —ZUJ' +

(VA )UTE% = {_2 + %()\ -O(A—a)+pu—alrA—-a) - éda(U)}Uj

+ {dBE) — AN(E) + - g(AE, Va) W, — Ajrar
+ (A8, Va)§; + (8 — M{a; — da(€)¢;},

where we have put g(A¢, Va) = A;;€7a’. From this and (1.11), we can,
using (2.12), verify that

(2.15)

3
UV U, = {2 -

p
+ Zda(U) + (6~ X)(2a — 6)}U;

+ Ajra” — g(A€,Va)E; — (0 — Ny + (6 — Nda()¢;
~ W{d0(€) — AN(E) + —g(AE, Va)} W

A=0(A—a)—p+a(r—a)

If we take the skew-symmetric part of (2.14) and make use of (1.5),
then we find

(2.16)

(ExAj+E — & ARE") + ApVil™ — Ay VU7

Ok — A)Uj — (05 — X\j)Uk + (8 — N)(ViU; — V;Uy),
which together with (2.12) yields

=0

1

A5 UV UT — (0= NURVLU; = {dO(U) — dAU)}U; —a(A—a)(6; — A;).
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Substituting (2.15) into this and using (1.13) and (2.6), we obtain
(2.17)
A 2am =200 - NAja” + (0 - A)2a;
A
+{9(A¢, Va) = (0 — a)da(©) }(— A" — (0 — M)¢;}
= {d0(U) — dA(U)}U; — oA — @)(0; — A;).

3. Lemmas

In this section, we suppose that a real hypersurface of a complex space
form is satisfied R¢¢ = ¢R¢ and A%¢ = QA€ + 7€ for some constant 7.
Then we have a(\ — ) = const. Thus it is clear that

(3.1) (A —0)a; = alb; — A;).
Therefore (2.17) is reduced to

(3.2)
ad;,2a” — 200 — M A" + a(f — N+ a — 2X)ay — alf — N da(U)U;
= {9(A¢, Va) = (60 — Nda(§) H{AA;rE" — alf — N)E;}-
REMARK. Kimura [14] constructed a minimal ruled real hypersurface
in P,C, where the vector field A2¢ = u2¢ but not £ is principal. On

the other hand, Ahn, Lee and Suh [1] constructed also a similar real
hypersurface in H,C. Thus our assumption has a meaning.

LEMMA 1. g(A&, Va) = Ada(§) on Q.
PROOF. From (1.13) and (2.6) we have respectively

pda(W) = g(A€, Va) - ada(€),
pg(AW,Va) = (8 — a)g(AL, Va) + al A — 0)da(€).

We also have from (2.7)

pg(A*W,Va) = (aX + 6% — 2a8)g(AE, Va) + a(X — 0)(0 — a)da(E).
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Transforming (3.2) for U7 and taking account of the last three equa-
tions, we can see that

(6 ~ N){g(A€, Va) - ada()} = 0.
Let €1 be the set of points in Q such that g(A¢, Va) — ada(€) # 0,
and suppose that £2; be nonvoid. Then we have # - A = 0 and hence

AU = 0 on §;. Thus (2.5) means that A¢ is principal curvature vector
field on ;. Further (2.16) becomes

Age VU™ = AV U" 4 2 (6 A" — € AretT) = 0.

From this, we can verify that £ is a principal curvature vector field (for
detail, see [11]), which a contradiction. This completes the proof. O

Since a(A — 6) is constant, by differentiating (2.5) covariantly along
() and using the second equation of (1.3), we find

3.3
+ (Vedjr)AJE + A (ViArs)€® — Aj, 2 Aps@™ + 0 A Apyd™
= Ok A;jr€” + 067V Ajr — oA — 0) Ageds,”.
Transvecting (3.3) with £/ and making use of (1.10), we obtain
(3.4) (ViArs )€ A€ = 644,07 + 2 (ab),
which together with (1.5) and (2.12) gives

(3.5) (Vidir )A€ = {006 2) = YUk + 4 (a)i.

If we transvect (3.3) with &* and using (1.10), (2.12) and (3.5), we
find

(36) {(0-N)(0+a—3%)~ $}U; = dO(E) A, — Ay %(eaj —ab)).
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Since we have, g(U,U) = a(X — a) and g(A&,U) = 0, by applying U7,
we have

(3.7) (2) — 8)da(U) — adf(U) = 2a(r — a){(@ — N)(6 + a — 3)) — i-}.

On the other hand, using (1.10), (2.9), (2.10), (2.11) and (2.12), we
get

(VieAjp)(a€® + uW*)(a” + pW")
= {2a(f — \)? - an}Uj + aXb; + a(f — Na;.

Transforming for A,*¢? to (3.3) and taking account of (1.5), (1.13),
(2.6), (3.4) and the last relationship, we have

{2a(6 — N)? — an}U- + alb;

+a(f — Aa; + 204, °U" — 260%A4;,U7 - S AU

2
n {g — Ba(\ — 0)}U; + —éAjr(oa)r - -2-0(9a)j

= g(Ag, V)A€,
or using (2.12),
(3.8)

9(AE, VO) A5, =3 Ajr(6B0)" ~ 10(6a); +ar; + (6 — Ny
(6 X)(300 — 202 — 200) + A~ an}Uj.
Applying by U7, we obtain
%a)\dB(U) +(ab—ar — %)\B)da(U)
+{(6 — A)(3al — 2aX — 20)) + —;—)\ - %ca}a()\ —a) =0,
which together with (3.7) implies that
(3.9) (8 — \da(U) = 3a(\ — a){g — (8- N2}

Transvecting (3.6) with £/ and using Lemma 1, we have
(3.10) adb(€) = (2X — 0)da(§).
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LEMMA 2. padf(W) = (A — a)(4) — 30)da(€) on Q.
ProOOF. From (1.13) and Lemma 1, it is clear that
(3.11) pda(W) = (A — a)da(€).
Applying (3.8) by U? and making use of (1.13), we find
p(adf(W) — 6da(W))
= (308 — 2a — 0%)da(€) + a(2X — 0 — a)db(£).

If we substitute (3.10) and (3.11) into this, we can get the required
equation. This completes the proof of Lemma 2. O

Because of (3.9) and Lemma 1, (3.2) is reduced to

(3.12)
aAjfo/' = 2a(0 — N Ajra” + a8 - A) (6 + a — 2))a;

= da(£)(22 ~ )A€ — a0 = g} + 3a(r ~ ) — (0 - )2}

LEMMA 3. (0 — Naa; = (0 — A)da(£) A& + 3af{§ — (60— X\)2}U; on
Q.

PROOF. Because of (3.9) and Lemma 1, (3.2) turns out to be

(3.13)
aAj,.zaT —2a(0 — N Ajra” + a6 — A)(0 + a — 2))a,

= (22 = 0)da(©){M ;€ ~ af ~ N} + 3a(r — a){(0 - 1) — $)U;.
From (3.6) and (3.10) we have

(3.14)
1
aAjra’ + 5a(a9j — fa;)

= (2X = 0)da(§)450¢” + a{(8 - N)(3X —a = 0) + $}U,



330 U-Hang Ki, An-Aye Lee and Seong-Baek Lee
which together with (2.5) and (2.12) implies that
(3.15) aAjrza’" + éaAjT(()a)r —faA;a”
= (2X = 0)da(§){0A4;-¢" + (A - 6)¢;}
+ a8~ N{( - NBA-a—0)+ ~}U;.
Making use of (1.13), (3.11) and Lemma 2, we have
ag(AE, V) = {a(2X — 8) + (A — a)(4X — 30)}da(§).
Thus (3.8) becomes
%aAjr(Ba)T —{a(2) — 0) + (A — ) (4) — 30)}da(€) A €7
1
+ (502 —af + aNaa; — o*(A — %9)9]-
+{(0 — N)(26X + 2aX — 3ab) — g)\ + ~i—i—ca}Uj.
Substituting (3.13) and this into (3.15), we find
a(f — 2X\)Ajra”
1
+ {592 —af+ar— (0 — N0 - 22X+ a)laa; — o* (A - %H)Oj
={(2A = 0)(0 — A — o) — (A — a)(4A — 30) }da(§) A;-E
+ (0 — {0 — V) (2a - 8) + 3af — 2ar — 20\}U;
+ za(ﬁ + 4 - 62U,
or, using (3.14) we get the required equation. Hence Lemma 3 is proved.U]

As in the proof of Lemma 1, we know that § — A does not vanish in
Q. Thus, from (3.9) and Lemma 3, we have

(316) aQ; = ijrév' + TUj
on 2, where we have put

(3.17) p = da(§), (A — a)T = da(U)
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LEMMA 4. da(U)da(€) =0 on .

PROOF. Because of properties of the almost contact metric structure,
we see, using (3.16), that

(3.18) ap;ra’” = —pU; + 7(A;r€" — ;).
On the other hand, from (2.4) we have
(3.19)

ViUj = ViUg + 0(§Aer€” — §uAjr")
=& (ViArs)or —§ (ViArs)9,” — (A~ 0)(Ex A€ — & ARrET),

where we have used (2.5) and (2.12).
Transvecting (3.19) with ¢* and taking account of (1.6), (1.10) and
(3.18), we find

(3200 af*(Vil; — V,Ui) = (A= 7)(4;,€" — ag;) + pU.
Differentiating (3.16) covariantly along © and using (1.3), we find
are; +aVia; = prAir€" + p(ViAjr)E — pAjrArse™® + Uy + VU,
from which, taking the skew-symmetric part and making use of (1.5),

peAjr — pjArE" — gp%‘ — 2pAjr Ars 9™ + TeUj — 7;Uk
+ 7(ViU; — V,;Ux) = 0.
Applying this by £* and taking account of (2.12) and (3.20), we get
02p; ={adp(€) + T(A = T)} A€ — ar(A =TI,
+ {2ap(0 — A) + p1 + ad7(£)}U;.
Thus, the last equation is reduced to

(3.21)
TA = THE ArrE” — EeArET)

+ {2p(0 - /\) - é‘pT + dT(g)}(UkAjrgr - UjAkrfr)

_ gpagbkj — 2p0A;; A"
+ a{nU; — ;U ) + ar(ViU; — V;Ui) = 0.
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From (3.9) we have (8 — A\)7 = 3a{§ — (6 — X\)?}. Differentiating this
along €} and using (3.1), we obtain a7; = 27q; -- 6aq;, which together
with (3.16) implies

o1y = 2(r — 3a)(pA ;& + TU;).
Hence (3.21) becomes
(3.22)
T = )& AT = E6Ajr€) + (26 = 20+ D)p(Ui A" — U A7)
- -;-wakj —2paA;rAgsd™ + Ta(ViU; — V;U,) = 0.
Transvecting (3.22) with U*W/J and using (2.5) and (2.12), we find

(3.23)
TUMWI(VU; — V;UL) + (20 — 2X + —’;)pu(x ~a)
4

+ %up = 2pp(6 — A)(0 — o) = 0.

On the other hand, transvecting (2.15) with W7 and making use of
(2.6) and (3.1), we find

WIURVU; = pr -+ (A~ a)da(W) + Eor,

or using (3.11), _
aWIURY U, = u(0 — M.

Applying (2.4) for W*UJ and taking accourt of (2.9), (2.12) and
(3.10), we also have

aWkUijUj = p(2A -0 — a)r.
Combining the last two relationships, we can get
aWIUR(VU; — V;Up) = pr(20 — 3\ + q).

Substituting this into (3.23), we obtain up{(6—\)T—a(f—X)?+<a} =
0. From this and (3.9) and (3.17), we see that (§—\)7p = 0, which proves
7p = 0 on €. This completes the proof. 0
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4. Proof of theorems

First of all, we shall prove that ¢ is a principal curvature vector field
under the assumptions as those stated in section 3.

From (3.16) and Lemma 4, we easily see that p vanishes on Q and
hence aa; = 7Uj, and (3.20) becomes

(4.1) ¥ (VilU; = V;Ur) = (A = 7)u W,

because of (1.13).
By (1.12) we have

€'V, Uj = —3(8 — NuW; + ad;&" — At — guwj
where we have used (2.5), which together with (1.7) and (2.5) gives
£ (V. U; — V;U,) = (3A — 20 — g)uwj.

From this and (4.1) we verify that § — A = 0, which a contradiction.
Consequently we have proved that € is empty.
Thus we have

PROPOSITION 5. Let M be a real hypersurface of a complex space
form My(c),c # O such that R¢¢ = ¢pR¢. If the shape operator A of
M satisfies A%¢ = AL + 1€ for some constant T, then € is a principal
curvature vector field, where # is a function on M.

From (1.4) we see that the Ricci tensor S of M is given by

c
Sji = ({(2n+1)gjs — 366} + hAj - A%,
where h = trA.
Now, we suppose that S€ = g€ for some constant ¢ on M. Then we
have A%¢ = hAE + {£(n — 1) — 0}¢. Therefore by virtue of (2.1) we
obtain U = 0 and hence a(A¢ ~ ¢A) = 0 because of Proposition 5.
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According to Theorem C, we have

THEOREM 6. Let M be a connected real hypersurface of a complex
space form M,(c),c # 0 satisfying Re¢ = ¢Re. If S€ = o€ for some
constant o, then M is locally congruent to be of type A provided that
9(AE,€) # 0.

REMARK. In the pseudo umbilical real hypersurface of a complex
space form, we can reduce that S¢ = o€ and ¢ is constant.

In the previous paper [6], [8], we proved that if a real hypersurface of
a complex space form is satisfied R¢¢pA = A$pR,. Then we have from
(1.4)

c T T r 8 r 8
S50, + Aird)T) = (Ajo€") (AU%) + (Au€")(A,,U°)
and hence AU = —ZU. Thus, it follows that
Q(Ajrqf)ir + Air(ﬁjr) —+ U]‘A»,jrgr + Uz’AjTé'T = O,

namely, R¢¢ = ¢R¢. From this we can easily see that A%¢ = 0A¢ +
7€ for some differentiable function . Thus, owing to Theorem C and
Proposition b, we have

COROLLARY 7(cf. [8]). Let M be a real hypersurface of a complex
space form My (c),c # 0. If M satisfies R¢¢pA = ApRe, then M is locally
congruent to be of type A.
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