ON REAL HYPERSURFACES OF A COMPLEX SPACE FORM IN TERMS OF JACOBI OPERATORS

U-HANG KI, AN-AYE LEE AND SEONG-BAEK LEE

ABSTRACT. We study real hypersurfaces of a complex space form such that the Jacobi operator with respect to the structure vector field and the structure tensor ϕ on the real hypersurface commute.

0. Introduction

A Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. The complete and simply connected complex space form is a complex projective space P_nC , a complex Euclidean space C_n , or a complex hyperbolic space H_nC according as c > 0, c = 0 or c < 0.

The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ will be denoted by (ϕ, g, ξ, η) . The structure vector field ξ is said to be *principal* if $A\xi = \alpha \xi$, where A is the shape operator in the direction of the unit normal C and $\alpha = \eta(A\xi)$.

Typical examples of real hypersurfaces in P_nC are homogeneous one. Takagi ([23]) classified homogeneous real hypersurfaces of a complex projective space P_nC as the following six types.

THEOREM A. Let M be a homogeneous real hyperspace of P_nC . Then M is locally congruent to one of the followings:

- (A₁) a geodesic hypersphere (that is, a tube over a hyperplane $P_{n-1}C$),
- (A₂) a tube over a totally geodesic $P_kC(1 \le k \le n-2)$,
 - (B) a tube over a complex quadric Q_{n-1} ,

Received November 1, 1997. Revised February 2, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 53C15, 53C45.

Key words and phrases: Jacobi operator, principal curvature vector, homogeneous real hypersurface.

The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1997.

- (C) a tube over $P_1C \times P_{(n-1)/2}C$ and $n(\geq 5)$ is odd,
- (D) a tube over a complex Grassman $G_{2,5}C$ and n=9,
- (E) a tube over a Hermitian symmetric space SO(10)/U(5) and n = 15.

This result is generalized by many authors ([2], [4], [12], [15], [16], [22] and [23] etc.). One of them, Kimura ([12]) asserts that M has constant principal curvatures and the structure vector field ξ is principal if and only if M is locally congruent to a homogeneous real hypersurface.

On the other hand, real hypersurface of H_nC have been also investigated by many geometers ([9], [10], [18] and [19] etc.) from different points of view. In particular, Berndt ([3]) proved the following:

THEOREM B. Let M be a real hypersurface of H_nC . Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the followings:

- (A_0) a self-tube, that is, a horosphere,
- (A₁) a geodesic hypersphere or a tube over a hyperplane $H_{n-1}C$,
- (A₂) a tube over a totally geodesic $H_kC(1 \le k \le n-2)$,
 - (B) a tube over a totally real hyperbolic space H_nR .

Let M be a real hypersurface of type A_1 or type A_2 in a complex projective space P_nC or that of type A_0 , A_1 or A_2 in a complex hyperbolic space H_nC . Then M is said to be of type A for simplicity. By a theorem due to Okumura ([20]) and to Montiel and Romero ([19]) we have (see also Ki [7])

THEOREM C. If the shape operator A and the structure tensor ϕ commute to each other, then a real hypersurface of a complex space form $M_n(c)$, $c \neq 0$ is locally congruent to be of type A.

We denote by ∇ the Levi-Civita connection with respect to the metric tensor g. The curvature tensor field R on M is defined by $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$, where X and Y are vector fields on M. We define the Jacobi operator field $R_X = R(\cdot, X)X$ with respect to a unit vector field X. Then we see that R_X is a self-adjoint endomorphism of the tangent space. It is well-known that the notion of Jacobi vector fields involve many important geometric properties. In the preceding work ([6]), we prove the following:

THEOREM D. Let M be a connected real hypersurface of a complex projective space P_nC . If M satisfies $R_{\xi}\phi A = A\phi R_{\xi}$, then M is locally congruent to one of the following spaces:

- (A₁) a geodesic hypersphere (that is, a tube of radius r over a hyperplane $P_{n-1}C$, where $0 < r < \frac{\pi}{2}$);
- (A₂) a tube of radius r over a totally geodesic $P_kC(0 \le k \le n-1)$, where $0 < r < \frac{\pi}{2}$.

In this paper we study some real hypersurfaces in a complex space form $M_n(c), c \neq 0$ in terms of the Jacobi operator, the structure tensor ϕ and the Jacobi operator R_{ξ} with respect to the structure vector field ξ , and improve above Theorem D.

All manifolds in this paper are assumed to be connected and of class C^{∞} and the real hypersurfaces are supposed to be orientable.

1. Preliminaries

Let $M_n(c)$ be a real 2n-dimensional complex space form equipped with parallel almost complex structure J and a Riemannian metric tensor G which is J-Hermitian, and covered by a system of coordinate neighborhoods $\{W; x^A\}$.

Let M be a real (2n-1)-dimensional hypersurface of $M_n(c)$ covered by a system of coordinate neighborhoods $\{V; y^h\}$ and immersed isometrically in $M_n(c)$ by the immersion $i: M \to M_n(c)$. Throughout the present paper the following convention on the range of indices are used, unless otherwise stated:

$$A, B, \dots = 1, 2, \dots, 2n; \quad i, j, \dots = 1, 2, \dots, 2n - 1.$$

The summation convention will be used with respect to those system of indices. When the argument is local, M need not be distinguished from i(M). Thus, for simplicity, a point p in M may be identified with the point i(p) and a tangent vector X at p may also be identified with the tangent vector $i_*(X)$ at i(p) via the differential i_* of i. We represent the immersion i locally by $x^A = x^A(y^h)$ and $B_j = (B_j^A)$ are also (2n-1)-linearly independent local tangent vectors of M, where $B_j^A = \partial_j x^A$ and $\partial_j = \partial/\partial y^j$. A unit normal C to M may then be chosen. The

induced Riemannian metric g with components g_{ji} on M is given by $g_{ji} = G_{BA}B_j{}^BB_i{}^A$ because the immersion is isometric.

For the unit normal C to M, the following representations are obtained in each coordinate neighborhood:

(1.1)
$$JB_{i} = \phi_{i}^{h}B_{h} + \xi_{i}C, \quad JC = -\xi^{i}B_{i},$$

where we have put $\phi_{ji} = G(JB_j, B_i)$ and $\xi_i = G(JB_i, C), \xi^h$ being components of a vector field ξ associated with ξ_i and $\phi_{ji} = \phi_j^r g_{ri}$. By the properties of the almost Hermitian structure J, it is clear that ϕ_{ji} is skew-symmetric. A tensor field of type (1,1) with components ϕ_i^h will be denoted by ϕ . By the properties of the almost complex structure J, the following relations are then given:

$$\phi_{i}{}^{r}\phi_{r}{}^{h} = -\delta_{i}{}^{h} + \xi_{i}\xi^{h}, \quad \xi^{r}\phi_{r}{}^{h} = 0, \quad \xi_{r}\phi_{i}{}^{r} = 0, \quad \xi_{i}\xi^{i} = 1,$$

that is, the aggregate (ϕ, g, ξ) defines an almost contact metric structure. Denoting by ∇_j the operator of van der Waerdern-Bortolotti covariant differentiation with respect to the induced Riemannian metric, equations of the Gauss and Weingarten for M are respectively obtained:

(1.2)
$$\nabla_j B_i = A_{ji} C, \quad \nabla_j C = -A_j{}^h B_h,$$

where $H = (A_{ji})$ is a second fundamental form and $A = (A_j^h)$, which is related by $A_{ji} = A_j^r g_{ri}$ is the shape operator derived from C. By means of (1.1) and (1.2) the covariant derivatives of the structure tensors are yielded:

(1.3)
$$\nabla_j \phi_i^{\ h} = -A_{ji} \xi^h + A_j^{\ h} \xi_i, \quad \nabla_j \xi_i = -A_{jr} \phi_i^{\ r}.$$

Since the ambient space is complex space form, equations of the Gauss and Codazzi for M are respectively given by

(1.4)
$$R_{kjih} = \frac{c}{4} (g_{kh}g_{ji} - g_{jh}g_{ki} + \phi_{kh}\phi_{ji} - \phi_{jh}\phi_{ki} - 2\phi_{kj}\phi_{ih}) + A_{kh}A_{ji} - A_{jh}A_{ki},$$

(1.5)
$$\nabla_{k} A_{ji} - \nabla_{j} A_{ki} = \frac{c}{4} (\xi_{k} \phi_{ji} - \xi_{j} \phi_{ki} - 2\xi_{i} \phi_{kj}),$$

where R_{kjih} are components of the Riemannian curvature tensor R of M.

In what follows, to write our formulas in convention forms, we denote by $A_{ji}^2 = A_{jr}A_i^r$, $h = g_{ji}A^{ji}$, $\alpha = A_{ji}\xi^j\xi^i$ and $\beta = A_{ji}^2\xi^j\xi^i$. If we put $U_j = \xi^r \nabla_r \xi_j$, then U is orthogonal to the structure vector field ξ . Because of the properties of the almost contact metric structure and the second equation of (1.3), we can get

$$\phi_{jr}U^r = A_{jr}\xi^r - \alpha\xi_j,$$

which shows that $g(U, U) = \beta - \alpha^2$.

From (1.3), we have

(1.7)
$$\nabla_k \nabla_j \xi_i = (A_{jr} \xi^r) A_{ki} - A_{jk}^2 \xi_i - (\nabla_k A_{jr}) \phi_i^r,$$

By the definition of U and the second equation of (1.3), we easily see that

$$(1.8) U^r \nabla_j \xi_r = A_{jr}^2 \xi^r - \alpha A_{jr} \xi^r.$$

On the other hand, differentiating (1.6) covariantly along M and making use of (1.3), we find

$$(1.9) \xi_j A_{kr} U^r + \phi_{jr} \nabla_k U^r = \xi^r \nabla_k A_{jr} - A_{jr} A_{ks} \phi^{rs} - \alpha_k \xi_j + \alpha A_{kr} \phi_j^r,$$

which shows that

$$(1.10) \qquad (\nabla_k A_{ji}) \xi^j \xi^i = 2A_{kr} U^r + \alpha_k,$$

where $\alpha_k = \partial_k \alpha$.

Transforming (1.9) by $\phi_i^{\ j}$ and making use of (1.3) and (1.8), we find

$$(1.11) \qquad \nabla_k U_i + \xi_i A_{kr}^2 \xi^r + \xi^r (\nabla_k A_{sr}) \phi_i^s = (\nabla_k \xi^r) (\nabla_r \xi_i) + \alpha A_{ki},$$

which together with (1.3) and (1.10) yields

(1.12)
$$\xi^r \nabla_r U_j = -3U^s A_{rs} \phi_j^r + \alpha A_{jr} \xi^r - \beta \xi_j - \phi_{jr} \alpha^r.$$

We put

$$(1.13) A_{jr}\xi^r = \alpha \xi_j + \mu W_j,$$

where W is a unit vector field orthogonal to ξ . Then by (1.6) we see that $U=\mu\phi W$, and W is also orthogonal to U, and we have $\mu^2=\beta-\alpha^2$. We assume that $\mu\neq 0$ on M, that is, ξ is not a principal curvature vector field and we put $\Omega=\{p\in M|\mu(p)\neq 0\}$. Then Ω is an open subset of M and from now on we discuss our argument on Ω .

Since we have $U_j = \mu \phi_{rj} W^r$, we can, using (1.3), verify that

because ξ and W are mutually orthogonal.

2. Real hypersurfaces satisfying $R_{\xi}\phi = \phi R_{\xi}$

Let M be a real hypersurface of a complex space form $M_n(c), c \neq 0$. Then from (1.4) we have

$$(R_{\xi})_{ji} = rac{c}{4}(g_{ji} - \xi_{j}\xi_{i}) + lpha A_{ji} - (A_{jr}\xi^{r})(A_{is}\xi^{s}).$$

Suppose that $R_{\xi}\phi = \phi R_{\xi}$. Then we obtain

(2.1)
$$\alpha (A_{jr}\phi_i^{\ r} + A_{ir}\phi_j^{\ r}) + U_i A_{jr}\xi^r + U_j A_{ir}\xi^r = 0.$$

Transforming by U^i , we have

$$(2.2) U^s A_{sr} \phi_i^r = A_{ir}^2 \xi^r - \lambda A_{ir} \xi^r,$$

where we have put $\beta = \alpha \lambda$. Thus, because of properties of the almost contact metric structure it is seen that

(2.3)
$$-\xi^r A_{rs}^{\ 2} \phi_i^{\ s} = A_{jr} U^r + \lambda U_j.$$

Applying (2.1) by $\nabla_k \xi^j$ and using the second equation of (1.3) and (1.6), we find

$$\alpha(\nabla_j \xi^r)(\nabla_r \xi_i) + \alpha A_{ji}^2 = (A_{jr}^2 \xi^r)(A_{is} \xi^s) - U_i A_{jr} U^r.$$

Substituting this into (1.11), we get

(2.4)
$$\nabla_{k}U_{j} + (A_{kr}^{2}\xi^{r})\xi_{j} = -\xi^{r}(\nabla_{k}A_{sr})\phi_{j}^{s} + \alpha A_{jk} - A_{jk}^{2} - \frac{1}{\alpha}\{U_{j}A_{kr}U^{r} - (A_{kr}^{2}\xi^{r})(A_{js}\xi^{s})\}$$

since $\alpha \neq 0$ on Ω .

In what follows, we suppose that

$$A_{jr}^{2}\xi^{r} = \theta A_{jr}\xi^{r} + \tau \xi_{j}$$

for some function θ and τ on M. Then we have $\alpha(\lambda - \theta) = \tau$ and hence

(2.5)
$$A_{jr}^{2}\xi^{r} = \theta A_{jr}\xi^{r} + \alpha(\lambda - \theta)\xi_{j}$$

From this and (1.13), we see that

$$(2.6) A_{jr}W^r = \mu \xi_j + (\theta - \alpha)W_j$$

because $\mu \neq 0$ on Ω and consequently

$$(2.7) \hspace{1cm} A_{jr}^{\hspace{0.2cm} 2} W^r = \mu \theta \xi_j + (\lambda \alpha + \theta^2 - 2\alpha \theta) W_j.$$

Differentiating (2.6) covariantly along Ω , we find

(2.8)
$$(\nabla_k A_{jr}) W^r + A_{jr} \nabla_k W^r =$$

$$\mu_k \xi_j + \mu \nabla_k \xi_j + (\theta_k - \alpha_k) W_j + (\theta - \alpha) \nabla_k W_j,$$

which enables us to obtain

$$(\nabla_k A_{rs}) W^r W^s + \mu \xi^r \nabla_k W_r = \mu W^r \nabla_k \xi_r + \theta_k - \alpha_k$$

or using (1.14)

$$(2.9) \qquad (\nabla_j A_{rs}) W^r W^s = -2A_{jr} U^r + \theta_j - \alpha_j$$

because ξ and W are mutually orthogonal.

Transvecting (2.8) with ξ^{j} , we also have

(2.10)
$$\mu(\nabla_k A_{rs}) W^r \xi^s = (\theta - 2\alpha) A_{kr} U^r + \mu \mu_k,$$

which together with the Codazzi equation (1.5)

(2.11)
$$\mu(\nabla_r A_{ks}) W^r \xi^s = (\theta - 2\alpha) A_{kr} U^r - \frac{c}{2} U_k + \mu \mu_k.$$

From (2.3) and (2.5), we obtain

$$(2.12) A_{jr}U^r = (\theta - \lambda)U_j.$$

Hence, (1.12) turns out to be

(2.13)
$$\xi^r \nabla_r U_j = (3\lambda - 3\theta + \alpha)\mu W_j - \alpha(\lambda - \alpha)\xi_j - \phi_{jr}\alpha^r$$

with the aid of (1.13).

Differentiating (2.12) covariantly along Ω , we find

(2.14)
$$(\nabla_k A_{jr})U^r + A_{jr}\nabla_k U^r = (\theta_k - \lambda_k)U_j + (\theta - \lambda)\nabla_k U_j,$$

which together with (2.13) implies that

$$(\nabla_k A_{jr}) \xi^k U^r = \{ d\theta(\xi) - d\lambda(\xi) \} U_j$$
$$- (3\lambda - 3\theta + \alpha) \mu \{ A_{jr} W^r - (\theta - \lambda) W_j \}$$
$$+ \alpha (\lambda - \alpha) \{ A_{jr} \xi^r - (\theta - \lambda) \xi_j \} + A_j^r \phi_{rs} \alpha^s - (\theta - \lambda) \phi_{jr} \alpha^r,$$

where $d\theta(\xi) = \theta_t \xi^t$. If we use (1.5), then above equation can be written as

$$(\nabla_r A_{is}) U^r \xi^s = \frac{c}{4} \mu W_i + \{ d\theta(\xi) - d\lambda(\xi) \} U_i$$
$$- (3\lambda - 3\theta + \alpha) \mu \{ A_{ir} W^r - (\theta - \lambda) W_i \}$$
$$+ \alpha (\lambda - \alpha) \{ A_{ir} \xi^r - (\theta - \lambda) \xi_i \} + A_i^r \phi_{rs} \alpha^s - (\theta - \lambda) \phi_{ir} \alpha^r.$$

Transforming for $\phi_j^{\ i}$ and taking account of (1.6), (1.13) and (2.6), we can get

$$\begin{split} (\nabla_r A_{is}) U^r \xi^s \phi_j^{\ i} &= -\frac{c}{4} U_j + \frac{3}{\mu} (\lambda - \theta) (\lambda - \alpha) U_j + \mu U_j \\ &- \alpha (\lambda - \alpha) U_j + \{ d\theta(\xi) - d\lambda(\xi) \} \mu W_j \\ &- A_i^{\ r} \phi_{rs} \alpha^s \phi_j^{\ i} + (\theta - \lambda) \{ \alpha_j - d\alpha(\xi) \xi_j \}, \end{split}$$

or, using (1.6), (1.13) and (2.1),

$$(\nabla_{r}A_{is})U^{r}\xi^{s}\phi_{j}^{i} = \{-\frac{c}{4} + \frac{3}{\mu}(\lambda - \theta)(\lambda - \alpha) + \mu - \alpha(\lambda - \alpha) - \frac{1}{\alpha}d\alpha(U)\}U_{j}$$
$$+ \mu\{d\theta(\xi) - d\lambda(\xi) + \frac{1}{\alpha}g(A\xi, \nabla\alpha)\}W_{j} - A_{jr}\alpha^{r}$$
$$+ g(A\xi, \nabla\alpha)\xi_{j} + (\theta - \lambda)\{\alpha_{j} - d\alpha(\xi)\xi_{j}\},$$

where we have put $g(A\xi, \nabla \alpha) = A_{ji}\xi^j\alpha^i$. From this and (1.11), we can, using (2.12), verify that

(2.15)

$$U^{k}\nabla_{k}U_{j} = \left\{\frac{c}{4} - \frac{3}{\mu}(\lambda - \theta)(\lambda - \alpha) - \mu + \alpha(\lambda - \alpha)\right\}$$

$$+ \frac{1}{\alpha}d\alpha(U) + (\theta - \lambda)(2\alpha - \theta)U_{j}$$

$$+ A_{jr}\alpha^{r} - g(A\xi, \nabla\alpha)\xi_{j} - (\theta - \lambda)\alpha_{j} + (\theta - \lambda)d\alpha(\xi)\xi_{j}$$

$$- \mu\{d\theta(\xi) - d\lambda(\xi) + \frac{1}{\alpha}g(A\xi, \nabla\alpha)\}W_{j}.$$

If we take the skew-symmetric part of (2.14) and make use of (1.5), then we find

$$(2.16)$$

$$\frac{c}{4}(\xi_k A_{jr}\xi^r - \xi_j A_{kr}\xi^r) + A_{jr}\nabla_k U^r - A_{kr}\nabla_j U^r$$

$$= (\theta_k - \lambda_k)U_j - (\theta_j - \lambda_j)U_k + (\theta - \lambda)(\nabla_k U_j - \nabla_j U_k),$$

which together with (2.12) yields

$$A_{jr}U^k\nabla_kU^r-(\theta-\lambda)U^k\nabla_kU_j=\{d\theta(U)-d\lambda(U)\}U_j-\alpha(\lambda-\alpha)(\theta_j-\lambda_j).$$

Substituting (2.15) into this and using (1.13) and (2.6), we obtain

$$(2.17)$$

$$A_{jr}^{2}\alpha^{r} - 2(\theta - \lambda)A_{jr}\alpha^{r} + (\theta - \lambda)^{2}\alpha_{j}$$

$$+ \{g(A\xi, \nabla\alpha) - (\theta - \alpha)d\alpha(\xi)\}(\frac{\lambda}{\alpha}A_{jr}\xi^{r} - (\theta - \lambda)\xi_{j}\}$$

$$= \{d\theta(U) - d\lambda(U)\}U_{j} - \alpha(\lambda - \alpha)(\theta_{j} - \lambda_{j}).$$

3. Lemmas

In this section, we suppose that a real hypersurface of a complex space form is satisfied $R_{\xi}\phi = \phi R_{\xi}$ and $A^{2}\xi = \theta A\xi + \tau\xi$ for some constant τ . Then we have $\alpha(\lambda - \theta) = const$. Thus it is clear that

$$(3.1) \qquad (\lambda - \theta)\alpha_j = \alpha(\theta_j - \lambda_j).$$

Therefore (2.17) is reduced to

(3.2)

$$\alpha A_{jr}^{2} \alpha^{r} - 2\alpha(\theta - \lambda) A_{jr} \alpha^{r} + \alpha(\theta - \lambda)(\theta + \alpha - 2\lambda)\alpha_{j} - \alpha(\theta - \lambda) d\alpha(U) U_{j}$$

$$= \{ g(A\xi, \nabla \alpha) - (\theta - \lambda) d\alpha(\xi) \} \{ \lambda A_{jr} \xi^{r} - \alpha(\theta - \lambda) \xi_{j} \}.$$

REMARK. Kimura [14] constructed a minimal ruled real hypersurface in P_nC , where the vector field $A^2\xi = \mu^2\xi$ but not ξ is principal. On the other hand, Ahn, Lee and Suh [1] constructed also a similar real hypersurface in H_nC . Thus our assumption has a meaning.

LEMMA 1.
$$g(A\xi, \nabla \alpha) = \lambda d\alpha(\xi)$$
 on Ω .

PROOF. From (1.13) and (2.6) we have respectively

$$\mu d\alpha(W) = g(A\xi, \nabla \alpha) - \alpha d\alpha(\xi),$$

$$\mu g(AW, \nabla \alpha) = (\theta - \alpha)g(A\xi, \nabla \alpha) + \alpha(\lambda - \theta)d\alpha(\xi).$$

We also have from (2.7)

$$\mu g(A^2W, \nabla \alpha) = (\alpha \lambda + \theta^2 - 2\alpha \theta)g(A\xi, \nabla \alpha) + \alpha(\lambda - \theta)(\theta - \alpha)d\alpha(\xi).$$

Transforming (3.2) for U^j and taking account of the last three equations, we can see that

$$(\theta - \lambda)\{g(A\xi, \nabla \alpha) - \alpha d\alpha(\xi)\} = 0.$$

Let Ω_1 be the set of points in Ω such that $g(A\xi, \nabla \alpha) - \alpha d\alpha(\xi) \neq 0$, and suppose that Ω_1 be nonvoid. Then we have $\theta - \lambda = 0$ and hence AU = 0 on Ω_1 . Thus (2.5) means that $A\xi$ is principal curvature vector field on Ω_1 . Further (2.16) becomes

$$A_{jr}\nabla_k U^r - A_{kr}\nabla_j U^r + \frac{c}{4}(\xi_k A_{jr}\xi^r - \xi_j A_{kr}\xi^r) = 0.$$

From this, we can verify that ξ is a principal curvature vector field (for detail, see [11]), which a contradiction. This completes the proof.

Since $\alpha(\lambda - \theta)$ is constant, by differentiating (2.5) covariantly along Ω and using the second equation of (1.3), we find

$$(3.3) \qquad (\nabla_k A_{jr}) A_s^{\ r} \xi^s + A_j^{\ r} (\nabla_k A_{rs}) \xi^s - A_{jr}^{\ 2} A_{ks} \phi^{rs} + \theta A_{jr} A_{ks} \phi^{rs} = \theta_k A_{jr} \xi^r + \theta \xi^r \nabla_k A_{jr} - \alpha (\lambda - \theta) A_{kr} \phi_j^{\ r}.$$

Transvecting (3.3) with ξ^{j} and making use of (1.10), we obtain

(3.4)
$$(\nabla_k A_{rs}) \xi^r A_t^s \xi^t = \theta A_{kr} U^r + \frac{1}{2} (\alpha \theta)_k,$$

which together with (1.5) and (2.12) gives

(3.5)
$$(\nabla_t A_{kr}) \xi^t A_s^r \xi^s = \{ \theta(\theta - \lambda) - \frac{c}{4} \} U_k + \frac{1}{2} (\alpha \theta)_k.$$

If we transvect (3.3) with ξ^k and using (1.10), (2.12) and (3.5), we find

$$(3.6) \ \{(\theta-\lambda)(\theta+\alpha-3\lambda)-\frac{c}{4}\}U_j=d\theta(\xi)A_{jr}\xi^r-A_{jr}\alpha^r+\frac{1}{2}(\theta\alpha_j-\alpha\theta_j).$$

Since we have, $g(U,U) = \alpha(\lambda - \alpha)$ and $g(A\xi,U) = 0$, by applying U^j , we have

$$(3.7) (2\lambda - \theta)d\alpha(U) - \alpha d\theta(U) = 2\alpha(\lambda - \alpha)\{(\theta - \lambda)(\theta + \alpha - 3\lambda) - \frac{c}{4}\}.$$

On the other hand, using (1.10), (2.9), (2.10), (2.11) and (2.12), we get

$$egin{aligned} (
abla_k A_{jr}) (lpha \xi^k + \mu W^k) (lpha \xi^r + \mu W^r) \ &= \{2lpha (heta - \lambda)^2 - rac{3}{4} clpha \} U_j + lpha \lambda heta_j + lpha (heta - \lambda) lpha_j. \end{aligned}$$

Transforming for $A_t^{\ k}\xi^t$ to (3.3) and taking account of (1.5), (1.13), (2.6), (3.4) and the last relationship, we have

$$\begin{aligned} &\{2\alpha(\theta-\lambda)^2 - \frac{3}{4}c\alpha\}U_j + \alpha\lambda\theta_j \\ &+ \alpha(\theta-\lambda)\alpha_j + 2\theta A_{jr}^2 U^r - 2\theta^2 A_{jr} U^r - \frac{c}{2} A_{jr} U^r \\ &+ \{\frac{c}{2} - \theta\alpha(\lambda-\theta)\}U_j + \frac{1}{2} A_{jr}(\theta\alpha)^r - \frac{1}{2}\theta(\theta\alpha)_j \\ &= g(A\xi, \nabla\theta)A_{jr}\xi^r, \end{aligned}$$

or using (2.12),

(3.8)

$$\begin{split} g(A\xi,\nabla\theta)A_{jr}\xi^r = &\frac{1}{2}A_{jr}(\theta\alpha)^r - \frac{1}{2}\theta(\theta\alpha)_j + \alpha\lambda\theta_j + \alpha(\theta-\lambda)\alpha_j \\ &+ \{(\theta-\lambda)(3\alpha\theta - 2\alpha\lambda - 2\theta\lambda) + \frac{c}{2}\lambda - \frac{3}{4}c\alpha\}U_j. \end{split}$$

Applying by U^j , we obtain

$$\begin{split} &\frac{1}{2}\alpha\lambda d\theta(U) + (\alpha\theta - \alpha\lambda - \frac{1}{2}\lambda\theta)d\alpha(U) \\ &+ \{(\theta - \lambda)(3\alpha\theta - 2\alpha\lambda - 2\theta\lambda) + \frac{c}{2}\lambda - \frac{3}{4}c\alpha\}\alpha(\lambda - \alpha) = 0, \end{split}$$

which together with (3.7) implies that

(3.9)
$$(\theta - \lambda)d\alpha(U) = 3\alpha(\lambda - \alpha)\left\{\frac{c}{4} - (\theta - \lambda)^2\right\}.$$

Transvecting (3.6) with ξ^j and using Lemma 1, we have

(3.10)
$$\alpha d\theta(\xi) = (2\lambda - \theta)d\alpha(\xi).$$

LEMMA 2. $\mu \alpha d\theta(W) = (\lambda - \alpha)(4\lambda - 3\theta)d\alpha(\xi)$ on Ω .

PROOF. From (1.13) and Lemma 1, it is clear that

(3.11)
$$\mu d\alpha(W) = (\lambda - \alpha) d\alpha(\xi).$$

Applying (3.8) by U^{j} and making use of (1.13), we find

$$\mu(\alpha d\theta(W) - \theta d\alpha(W))$$

$$= (3\alpha\theta - 2\alpha\lambda - \theta^2)d\alpha(\xi) + \alpha(2\lambda - \theta - \alpha)d\theta(\xi).$$

If we substitute (3.10) and (3.11) into this, we can get the required equation. This completes the proof of Lemma 2.

Because of (3.9) and Lemma 1, (3.2) is reduced to

$$\alpha A_{jr}^{2} \alpha^{r} - 2\alpha(\theta - \lambda) A_{jr} \alpha^{r} + \alpha(\theta - \lambda)(\theta + \alpha - 2\lambda)\alpha_{j}$$

$$= d\alpha(\xi)(2\lambda - \theta) \{\lambda A_{jr} \xi^{r} - \alpha(\theta - \lambda)\xi_{j}\} + 3\alpha(\lambda - \alpha) \{\frac{c}{4} - (\theta - \lambda)^{2}\}U_{j}.$$

Lemma 3. $(\theta-\lambda)\alpha\alpha_j=(\theta-\lambda)d\alpha(\xi)A_{jr}\xi^r+3\alpha\{\frac{c}{4}-(\theta-\lambda)^2\}U_j$ on Ω .

PROOF. Because of (3.9) and Lemma 1, (3.2) turns out to be

$$\begin{aligned} &\alpha A_{jr}^{2} \alpha^{r} - 2\alpha(\theta - \lambda) A_{jr} \alpha^{r} + \alpha(\theta - \lambda)(\theta + \alpha - 2\lambda) \alpha_{j} \\ &= (2\lambda - \theta) d\alpha(\xi) \{\lambda A_{jr} \xi^{r} - \alpha(\theta - \lambda) \xi_{j}\} + 3\alpha(\lambda - \alpha) \{(\theta - \lambda)^{2} - \frac{c}{\lambda}\} U_{j}. \end{aligned}$$

From (3.6) and (3.10) we have

$$\alpha A_{jr}\alpha^r + \frac{1}{2}\alpha(\alpha\theta_j - \theta\alpha_j)$$

= $(2\lambda - \theta)d\alpha(\xi)A_{jr}\xi^r + \alpha\{(\theta - \lambda)(3\lambda - \alpha - \theta) + \frac{c}{4}\}U_j$,

which together with (2.5) and (2.12) implies that

(3.15)
$$\alpha A_{jr}^{2} \alpha^{r} + \frac{1}{2} \alpha A_{jr} (\theta \alpha)^{r} - \theta \alpha A_{jr} \alpha^{r}$$

$$= (2\lambda - \theta) d\alpha(\xi) \{ \theta A_{jr} \xi^{r} + \alpha(\lambda - \theta) \xi_{j} \}$$

$$+ \alpha(\theta - \lambda) \{ (\theta - \lambda) (3\lambda - \alpha - \theta) + \frac{c}{\beta} \} U_{j}.$$

Making use of (1.13), (3.11) and Lemma 2, we have

$$\alpha g(A\xi, \nabla \theta) = \{\alpha(2\lambda - \theta) + (\lambda - \alpha)(4\lambda - 3\theta)\}d\alpha(\xi).$$

Thus (3.8) becomes

$$\frac{1}{2}\alpha A_{jr}(\theta\alpha)^{r} = \{\alpha(2\lambda - \theta) + (\lambda - \alpha)(4\lambda - 3\theta)\}d\alpha(\xi)A_{jr}\xi^{r}
+ (\frac{1}{2}\theta^{2} - \alpha\theta + \alpha\lambda)\alpha\alpha_{j} - \alpha^{2}(\lambda - \frac{1}{2}\theta)\theta_{j}
+ \{(\theta - \lambda)(2\theta\lambda + 2\alpha\lambda - 3\alpha\theta) - \frac{c}{2}\lambda + \frac{3}{4}c\alpha\}U_{j}.$$

Substituting (3.13) and this into (3.15), we find

$$\begin{split} &\alpha(\theta-2\lambda)A_{jr}\alpha^{r} \\ &+ \{\frac{1}{2}\theta^{2} - \alpha\theta + \alpha\lambda - (\theta-\lambda)(\theta-2\lambda+\alpha)\}\alpha\alpha_{j} - \alpha^{2}(\lambda-\frac{1}{2}\theta)\theta_{j} \\ &= \{(2\lambda-\theta)(\theta-\lambda-\alpha) - (\lambda-\alpha)(4\lambda-3\theta)\}d\alpha(\xi)A_{jr}\xi^{r} \\ &+ \alpha(\theta-\lambda)\{(\theta-\lambda)(2\alpha-\theta) + 3\alpha\theta - 2\alpha\lambda - 2\theta\lambda\}U_{j} \\ &+ \frac{c}{4}\alpha(\theta+4\lambda-6\alpha)U_{j}, \end{split}$$

or, using (3.14) we get the required equation. Hence Lemma 3 is proved.

As in the proof of Lemma 1, we know that $\theta - \lambda$ does not vanish in Ω . Thus, from (3.9) and Lemma 3, we have

(3.16)
$$\alpha \alpha_j = \rho A_{jr} \xi_r + \tau U_j$$

on Ω , where we have put

(3.17)
$$\rho = d\alpha(\xi), \qquad (\lambda - \alpha)\tau = d\alpha(U)$$

LEMMA 4. $d\alpha(U)d\alpha(\xi) = 0$ on Ω .

PROOF. Because of properties of the almost contact metric structure, we see, using (3.16), that

(3.18)
$$\alpha \phi_{ir} \alpha^r = -\rho U_i + \tau (A_{ir} \xi^r - \alpha \xi_i).$$

On the other hand, from (2.4) we have

(3.19)

$$\begin{split} &\nabla_k U_j - \nabla_j U_k + \theta (\xi_j A_{kr} \xi^r - \xi_k A_{jr} \xi^r) \\ &= \xi^r (\nabla_j A_{rs}) \phi_k^{\ s} - \xi^r (\nabla_k A_{rs}) \phi_j^{\ s} - (\lambda - \theta) (\xi_k A_{jr} \xi^r - \xi_j A_{kr} \xi^r), \end{split}$$

where we have used (2.5) and (2.12).

Transvecting (3.19) with ξ^k and taking account of (1.6), (1.10) and (3.18), we find

(3.20)
$$\alpha \xi^{k} (\nabla_{k} U_{j} - \nabla_{j} U_{k}) = (\lambda - \tau) (A_{jr} \xi^{r} - \alpha \xi_{j}) + \rho U_{j}.$$

Differentiating (3.16) covariantly along Ω and using (1.3), we find $\alpha_k \alpha_j + \alpha \nabla_k \alpha_j = \rho_k A_{jr} \xi^r + \rho (\nabla_k A_{jr}) \xi^r - \rho A_{jr} A_{ks} \phi^{rs} + \tau_k U_j + \tau \nabla_k U_j$, from which, taking the skew-symmetric part and making use of (1.5),

$$\rho_k A_{jr} \xi^r - \rho_j A_{kr} \xi^r - \frac{c}{2} \rho \phi_{kj} - 2\rho A_{jr} A_{ks} \phi^{rs} + \tau_k U_j - \tau_j U_k + \tau (\nabla_k U_j - \nabla_j U_k) = 0.$$

Applying this by ξ^k and taking account of (2.12) and (3.20), we get

$$\alpha^{2} \rho_{j} = \{\alpha d\rho(\xi) + \tau(\lambda - \tau)\} A_{jr} \xi^{r} - \alpha \tau(\lambda - \tau) \xi_{j} + \{2\alpha \rho(\theta - \lambda) + \rho \tau + \alpha d\tau(\xi)\} U_{j}.$$

Thus, the last equation is reduced to

$$(3.21)$$

$$\tau(\lambda - \tau)(\xi_{j}A_{kr}\xi^{r} - \xi_{k}A_{jr}\xi^{r})$$

$$+ \{2\rho(\theta - \lambda) + \frac{1}{\alpha}\rho\tau + d\tau(\xi)\}(U_{k}A_{jr}\xi^{r} - U_{j}A_{kr}\xi^{r})$$

$$- \frac{c}{2}\rho\alpha\phi_{kj} - 2\rho\alpha A_{jr}A_{ks}\phi^{rs}$$

$$+ \alpha(\tau_{k}U_{j} - \tau_{j}U_{k}) + \alpha\tau(\nabla_{k}U_{j} - \nabla_{j}U_{k}) = 0.$$

From (3.9) we have $(\theta - \lambda)\tau = 3\alpha\{\frac{c}{4} - (\theta - \lambda)^2\}$. Differentiating this along Ω and using (3.1), we obtain $\alpha\tau_j = 2\tau\alpha_j - 6\alpha\alpha_j$, which together with (3.16) implies

$$\alpha^2 \tau_j = 2(\tau - 3\alpha)(\rho A_{jr} \xi^r + \tau U_j).$$

Hence (3.21) becomes

(3.22)

$$\tau(\lambda - \tau)(\xi_j A_{kr} \xi^r - \xi_k A_{jr} \xi^r) + (2\theta - 2\lambda + \frac{\tau}{\alpha})\rho(U_k A_{jr} \xi^r - U_j A_{kr} \xi^r)$$
$$-\frac{c}{2}\rho\alpha\phi_{kj} - 2\rho\alpha A_{jr} A_{ks} \phi^{rs} + \tau\alpha(\nabla_k U_j - \nabla_j U_k) = 0.$$

Transvecting (3.22) with U^kW^j and using (2.5) and (2.12), we find (3.23)

$$\tau U^{k}W^{j}(\nabla_{k}U_{j} - \nabla_{j}U_{k}) + (2\theta - 2\lambda + \frac{\tau}{\alpha})\rho\mu(\lambda - \alpha) + \frac{c}{2}\mu\rho - 2\rho\mu(\theta - \lambda)(\theta - \alpha) = 0.$$

On the other hand, transvecting (2.15) with W^j and making use of (2.6) and (3.1), we find

$$W^{j}U^{k}\nabla_{k}U_{j} = \mu\tau + (\lambda - \alpha)d\alpha(W) + \frac{\mu}{\alpha}\theta\tau,$$

or using (3.11),

$$\alpha W^j U^k \nabla_k U_j = \mu(\theta - \lambda) \tau.$$

Applying (2.4) for W^kU^j and taking account of (2.9), (2.12) and (3.10), we also have

$$\alpha W^k U^j \nabla_k U_j = \mu (2\lambda - \theta - \alpha) \tau.$$

Combining the last two relationships, we can get

$$\alpha W^j U^k (\nabla_k U_j - \nabla_j U_k) = \mu \tau (2\theta - 3\lambda + \alpha).$$

Substituting this into (3.23), we obtain $\mu\rho\{(\theta-\lambda)\tau-\alpha(\theta-\lambda)^2+\frac{c}{4}\alpha\}=0$. From this and (3.9) and (3.17), we see that $(\theta-\lambda)\tau\rho=0$, which proves $\tau\rho=0$ on Ω . This completes the proof.

4. Proof of theorems

First of all, we shall prove that ξ is a principal curvature vector field under the assumptions as those stated in section 3.

From (3.16) and Lemma 4, we easily see that ρ vanishes on Ω and hence $\alpha \alpha_j = \tau U_j$, and (3.20) becomes

(4.1)
$$\alpha \xi^k (\nabla_k U_j - \nabla_j U_k) = (\lambda - \tau) \mu W_j$$

because of (1.13).

By (1.12) we have

$$\xi^r \nabla_r U_j = -3(\theta - \lambda)\mu W_j + \alpha A_{jr} \xi^r - \lambda \alpha \xi_j - \frac{\tau}{\alpha} \mu W_j,$$

where we have used (2.5), which together with (1.7) and (2.5) gives

$$\xi^r(\nabla_r U_j - \nabla_j U_r) = (3\lambda - 2\theta - \frac{\tau}{\alpha})\mu W_j.$$

From this and (4.1) we verify that $\theta - \lambda = 0$, which a contradiction. Consequently we have proved that Ω is empty.

Thus we have

PROPOSITION 5. Let M be a real hypersurface of a complex space form $M_n(c), c \neq 0$ such that $R_{\xi}\phi = \phi R_{\xi}$. If the shape operator A of M satisfies $A^2\xi = \theta A\xi + \tau \xi$ for some constant τ , then ξ is a principal curvature vector field, where θ is a function on M.

From (1.4) we see that the Ricci tensor S of M is given by

$$S_{ji} = rac{c}{4} \{ (2n+1)g_{ji} - 3\xi_j \xi_i \} + hA_{ji} - A_{ji}^{2},$$

where h = trA.

Now, we suppose that $S\xi = \sigma\xi$ for some constant σ on M. Then we have $A^2\xi = hA\xi + \{\frac{c}{2}(n-1) - \sigma\}\xi$. Therefore by virtue of (2.1) we obtain U = 0 and hence $\alpha(A\phi - \phi A) = 0$ because of Proposition 5.

According to Theorem C, we have

THEOREM 6. Let M be a connected real hypersurface of a complex space form $M_n(c), c \neq 0$ satisfying $R_{\xi}\phi = \phi R_{\xi}$. If $S\xi = \sigma \xi$ for some constant σ , then M is locally congruent to be of type A provided that $g(A\xi, \xi) \neq 0$.

REMARK. In the pseudo umbilical real hypersurface of a complex space form, we can reduce that $S\xi = \sigma \xi$ and σ is constant.

In the previous paper [6], [8], we proved that if a real hypersurface of a complex space form is satisfied $R_{\xi}\phi A = A\phi R_{\xi}$. Then we have from (1.4)

$$\frac{c}{4}(A_{jr}\phi_i^{\ r} + A_{ir}\phi_j^{\ r}) = (A_{jr}\xi^r)(A_{is}U^s) + (A_{ir}\xi^r)(A_{js}U^s)$$

and hence $\alpha AU = -\frac{c}{4}U$. Thus, it follows that

$$\alpha (A_{jr}\phi_{i}^{\ r} + A_{ir}\phi_{j}^{\ r}) + U_{j}A_{ir}\xi^{r} + U_{i}A_{jr}\xi^{r} = 0,$$

namely, $R_{\xi}\phi = \phi R_{\xi}$. From this we can easily see that $A^{2}\xi = \theta A\xi + \frac{c}{4}\xi$ for some differentiable function θ . Thus, owing to Theorem C and Proposition 5, we have

COROLLARY 7(cf. [8]). Let M be a real hypersurface of a complex space form $M_n(c), c \neq 0$. If M satisfies $R_{\xi} \phi A = A \phi R_{\xi}$, then M is locally congruent to be of type A.

References

- [1] S. S. Ahn, S.-B. Lee and Y. J. Suh, On ruled real hypersurfaces in a complex space form, Tsukuba J. Math. 17 (1993), 311-322.
- [2] S. S. Ahn and Y. J. Suh, On characterizations of real hypersurfaces of type B in a complex hyperbolic space, J. Korean Math. Soc. 32 (1995), 471-482.
- [3] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew Math. 395 (1989), 132-141.
- [4] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. **269** (1982), 481–499.
- [5] J. T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of a complex projective space, Tsukuba J. Math., to appear.

- [6] J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar., (to appear).
- [7] U-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba J. Math. 12 (1989), 259-268.
- [8] U-H. Ki, H.-J. Kim and A.-A. Lee, The Jacobi operator of real hypersurfaces in a complex space form, (preprint).
- [9] U-H. Ki, N.-G. Kim and S.-B. Lee, On certain real hypersurfaces of a complex space form, J. Korean Math. Soc. 29 (1992), 63-77.
- [10] U-H. Ki and Y.J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.
- [11] U-H. Ki and R. Takagi, Real hypersurfaces satisfying $\nabla_{\xi} S = 0$ in a complex space form II, Yokohama Math. J., (to appear).
- [12] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [13] _____, Some real hypersurfaces of a complex projective space, Saitama Math. J. 5 (1987), 1-5.
- [14] _____, Sectional curvatures of holomorphic planes on a real hypersurface in $P_n(\mathbb{C})$, Math. Ann. **276** (1987), 487–497.
- [15] M. Kimura and S. Maeda, On real hypersurfaces of complex projective space, Math. Z. 202 (1989), 299-311.
- [16] S. Maeda and S. Udagawa, Real hypersurfaces of a complex projective space in terms of holomorphic distributions, Tsukuba J. Math. 14 (1990), 39-52.
- [17] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
- [18] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
- [19] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245-261.
- [20] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- [21] Y. J. Suh, On real hypersurfaces of a complex space form, Tsukuba J. Math. 14 (1990), 27-37.
- [22] R. Takagi, On homogeneous real hypersurfaces of a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- [23] _____, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
- [24] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser (1983).

U-Hang Ki Topology and Geometry Research Center Kyungpook National University Taegu 702-701, Korea

An-Aye Lee Kumsung Environment College Naju 523-930, Korea

Seong-Baek Lee Department of Mathematics Chosun University Kwangju 501-759, Korea