• Title/Summary/Keyword: Structure behavior

Search Result 6,234, Processing Time 0.034 seconds

High-Temperature Oxidation Behavior of Commercial Pure Titanium in Mixed Gases (혼합가스 분위기 중에서 공업용 순 타이타늄의 고온산화 거동)

  • Park, S.H.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.44-50
    • /
    • 2007
  • The oxidation behavior of commercial pure titanium is investigated in the temperature range of $727^{\circ}C{\sim}950^{\circ}C$ in mixed gases. The weight change is measured by TGA during oxidation in mixed gases. The oxidation behavior indicated by weight gain or the growth of oxide layer is based on the linear rate law at high temperatures. The structure of the oxide scale formed during oxidation is analysed by optical microscopy, electron probe microanalyzer, scanning electron microscope and x-ray diffraction. Oxide scales have a $TiO_2$ structure, and are constituted with multi-layered or two layered porous external one and a dense internal one. Ti-O solid solution region is formed at the interface of metal and scale layer. The formation of oxide scale is influenced by the oxidation temperature, time, crystal structure and the condition of atmosphere.

  • PDF

An Experimental Study on the Static and Fatigue Behavior of H & Channel-Type Lining Board (H형 복공판과 Channel형 복공판의 정적해석 및 피로거동에 관한 실험적 연구)

  • 김두환;이승수;박대열;이태수
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.508-513
    • /
    • 2003
  • The objective of this paper is to investigate the lining board's capacity by using the static loading test and fatigue test. Specimens that constitute the H & Channel type lining board are adopted. The test is to inspect the possibility of retrofit and efficiency, which is required to upgrade the structure's capacity and to examine the effects of the improvements of specimen by using structural analysis, stress analysis, static loading test and fatigue test, respectively. The accumulated test results of stress condition and deflection by bending will be used to analyze the relation between the cause of fatigue crack occurrence and the behavior of both structure system and the steel.

  • PDF

Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete (초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

A Study on the Sensitivity of Dynamic Behavior of Jacket Type Offshore Structure (자켓형 해양 구조물의 동적거동에 대한 민감도 연구)

  • Lee, Jung-Tak;Lee, Kang-Su;Shin, Sang-Hak;Son, Choong-Yul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.110-118
    • /
    • 2008
  • This thesis introduces a study conducted by ANSYS, Finite Element Analysis program, on dynamic behavior by thickness of a chord and a brace of a jacket typed marine structure. As load condition to work on offshore structures is getting much more various, it becomes more important to design the structures and operate them. In addition, stability is also required. As the result of this study, it was proved that wind and wave load gives more affection on frequency than on added mass in the Modal Analysis. Also, the chord and brace affect stiffness more than diagonal brace according to sensitivity analysis.

  • PDF

Effect of construction sequence on three-arch tunnel behavior-Numerical investigation

  • Yoo, C.;Choi, J.
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.911-917
    • /
    • 2018
  • This paper concerns a numerical investigation on the effect of construction sequence on three-arch (3-Arch) tunnel behavior. A three-arch tunnel section adopted in a railway tunnel construction site was considered in this study. A calibrated 3D finite element model was used to conduct a parametric study on a variety of construction scenarios. The results of analyses were examined in terms of tunnel and ground surface settlements, shotcrete lining stresses, loads and stresses developed in center column in relation to the tunnel construction sequence. In particular, the effect of the side tunnel construction sequence on the structural performance of the center structure was fully examined. The results indicated that the load, thus stress, in the center structure can be smaller when excavating two side tunnels from opposite direction than excavating in the same direction. Also revealed was that no face lagging distance between the two side tunnels impose less ground load to the center structure. Fundamental governing mechanism of three-arch tunnel behavior is also discussed based on the results.

A Study on the Nonlinear Analysis of Dynamic Response of Shell Structure (Shell 구조물의 비선형 동적응답 해석에 관한 연구)

  • Bae, Dong-Myung;Jin, Jong-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-92
    • /
    • 1992
  • This is analyzed using the finite element method which is appling excellent isoparametric curve element in the aspect of large usages of dynamic responses in which is regarding geometric and material nonlinear of a large scale shell structure of an airplane, a submarine, a ship, and an ocean structure. The solution of dynamic equations is got by direct integration method using time-stepping procedure and regarding Central Difference Method of the both solutions. But because formal matrix factorization is not necessary in each time step and it does not take less time to compute relatively, this method must be regarded very few time steps on the condition. Axisymmatric shell problems are inspected using 8 node Isoparametric element in this paper. Partial axisymmatric spherical shell is used as a model to analyze axisymmatric nonlinear dynamic behavior regarding. Total Lagrangian formulation in geometric nonlinear behavior and elastio-viscoplastic in material nonlinear behavior.

  • PDF

A Structural Flexible Behavior T-type Joint for RCS Composite System (철근콘크리트기둥과 철골보 접합부의 휨성능(1))

  • Kim, Young-Soo;Kim, Young-Ho;Jeong, Jae-Hun;Kim, Jin-Mu;Won, Young-SuI;Joo, Kyung-Jai
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.139-146
    • /
    • 2001
  • Res system, with Reinforced Concrete columns and Steel beams, is defined as system in which both steel and concrete materials are efficiently combined to maximize the structural and economic advantages of each material. Tested in this study were 4 exterior beam-to-column joint specimens with variables that influence joint rigidity of RCS structure. The purpose of this study is to compare and analyze the structural behavior of exterior joints through the existing studies and tests, and offer basic data for practical use of RCS structure by studying flexible behavior(semi-rigid effect) of joints according to joint details.

  • PDF

Isogeometric analysis of the seismic response of a gravity dam: A comparison with FEM

  • Abdelhafid Lahdiri;Mohammed Kadri
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.81-96
    • /
    • 2024
  • Modeling and analyzing the dynamic behavior of fluid-soil-structure interaction problems are crucial in structural engineering. The solution to such coupled engineering systems is often not achievable through analytical modeling alone, and a numerical solution is necessary. Generally, the Finite Element Method (FEM) is commonly used to address such problems. However, when dealing with coupled problems with complex geometry, the finite element method may not precisely represent the geometry, leading to errors that impact solution quality. Recently, Isogeometric Analysis (IGA) has emerged as a preferred method for modeling and analyzing complex systems. In this study, IGA based on Non-Uniform Rational B-Splines (NURBS) is employed to analyze the seismic behavior of concrete gravity dams, considering fluid-structure-foundation interaction. The performance of IGA is then compared with the classical finite element solution. The computational efficiency of IGA is demonstrated through case studies involving simulations of the reservoir-foundation-dam system under seismic loading.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Static or Dynamic Capital Structure Policy Behavior: Empirical Evidence from Indonesia

  • UTAMI, Elok Sri;GUMANTI, Tatang Ary;SUBROTO, Bambang;KHASANAH, Umrotul
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.71-79
    • /
    • 2021
  • This study investigates the capital structure policy among Indonesian public companies. Previous studies suggest that capital structure policy could follow either static or dynamic behavior. The sample data used in this study was companies in the manufacturing sector, divided into three sub-sectors: the basic and chemical industry, miscellaneous industry, and the consumer goods industry. This study uses panel data from 2010 to 2018, with the Generalized Least Square (GLS) method and compared whether the fixed effect model is better than the common effect model. The results show that the dynamic and non-linear model tests can explain the capital structure determinants than the static and linear models. The dynamic model shows that the capital structure of a certain year is influenced by the capital structure of the previous year. The findings indicate that the company performs some adjustments in its capital structure policy by referring to the previous debt ratio, which implies support to the trade-off theory (TOT). The study also shows that profitability, tangible assets, size, and age explain the variation of capital structure policy. The patterns on the dynamic and non-linear confirm that capital structure runs in a nonlinear pattern, based on the sector, company condition, and the dynamic environment.