• Title/Summary/Keyword: Structure and spectral properties

Search Result 138, Processing Time 0.025 seconds

Optical and Heat Transfer Characteristics in a Rapid Thermal Annealing System for LCD Manufacturing Procedures (LCD 제작용 급속 열처리 시스템내의 광학 및 열전달 특성)

  • Lee, Seong-Hyuk;Kim, Hyung-June;Shin, Dong-Hoon;Lee, Joon-Sik;Choi, Young-Ki;Park, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1370-1375
    • /
    • 2004
  • This article investigates the heat transfer characteristics in a RTA system for LCD manufacturing and suggests a way to evaluate the quality of a poly-Si film from the thin film optics analysis. The transient and one-dimensional conductive/radiative heat transfer equation considering wave interference effect is solved to predict surface temperatures of thin films. In dealing with radiative heat transfer, a one-dimensional two-flux method is used and the ray tracing method is also utilized to account for the wave interference effects. It is assumed that each interface is assumed diffusive but the spectral radiative properties are included. It is found that the selective heating region exists for various wavelengths and consequently may contribute to heat the poly-Si film. Using the formalism of the characteristic transmission matrix, the lumped structure reflectance, transmittance, and absorptance are calculated and they are compared with experimental data of the poly-Si film during the SPC process via the FE-RTA (Field-Enhanced RTA) technology.

  • PDF

Analysis of structure and properties of wavelength demultiplexing using photopolymer phase grating (포토폴리머 위상 격자를 이용한 파장 역다중화 구조 및 특성 분석)

  • Choi, Won-Jun;An, Jun-Won;Kim, Nam;Lee, Kwon-Yeon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2002
  • A new wavelength demultiplexing scheme using holographic volume phase grating formed in photopolymer is proposed and demonstrated. Through the analysis and experiments of the design parameters such as wavelength selectivity, operating spectral range, spatial channel distance and spatial intensity distribution of each channel, we proved that the proposed demultiplexing scheme is promising for wavelength division multiplexing (WDM). From the experimental results, the 3 dB bandwidth of 0.21nm and the crosstalk level of 26 dB for a 0.8 nm channel spacing are observed.

Development of Neural-Networks-based Model for the Fourier Amplitude Spectrum and Parameter Identification in the Generation of an Artificial Earthquake (인공 지진 생성에서 Fourier 진폭 스펙트럼과 변수 추정을 위한 신경망 모델의 개발)

  • 조빈아;이승창;한상환;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.439-446
    • /
    • 1998
  • One of the most important roles in the nonlinear dynamic structural analysis is to select a proper ground excitation, which dominates the response of a structure. Because of the lack of recorded accelerograms in Korea, a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms is necessarily required. If all information is not available at site, the information from other sites with similar features can be used by the procedure of seismic hazard analysis. Eliopoulos and Wen identified the parameters of the ground motion model by the empirical relations or expressions developed by Trifunac and Lee. Because the relations used in the parameter identification are largely empirical, it is required to apply the artificial neural networks instead of the empirical model. Additionally, neural networks have the advantage of the empirical model that it can continuously re-train the new recorded data, so that it can adapt to the change of the enormous data. Based on the redefined traditional processes, three neural-networks-based models (FAS_NN, PSD_NN and INT_NN) are proposed to individually substitute the Fourier amplitude spectrum, the parameter identification of power spectral density function and intensity function. The paper describes the first half of the research for the development of Neural-Networks-based model for the generation of an Artificial earthquake and a Response Spectrum(NNARS).

  • PDF

Optoelectronics Properties of In0.27Ga0.73N/GaN Multi-Quantum-Well Structure (In0.27Ga0.73N/GaN 다중 양자우물 구조에 대한 광전기적 특성)

  • Park, Hun-Bo;Bae, In-Ho;Kim, Ki-Hong
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.489-492
    • /
    • 2007
  • Temperature and injection current dependence of elctroluminescence(EL) spectral intensity of the $In_{0.27}Ga_{0.73}N/GaN$ multi-quantum-well(MQW) have been studied over a wide temperature and as a function of injection current level. EL peaks also show significant broadening into higher photon energy region with the increase of injection current. This is explained by the band-filling effect. When temperature is slightly increased to 300 from 15 K, the EL emission peak showed red-blue-red shift. It can be explained by the carrier localization by potential fluctuation of multiple quantum well and band-gap shrinkage as temperature increase. It is found that a temperature-dependent variation pattern of the EL efficiency under very low and high injection currents show a drastic difference. This unique EL efficiency variation pattern with temperature and current is explained field effects due to the driving forward bias in presence of internal(piezo and spontaneous polarization) fields.

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.

Effect of local joint flexibility on the fatigue lfe assessment of jacket-type offshore platform

  • Behrouz Asgarian;Parviz Kuzehgar;Pooya Rezadoost
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • This paper investigates the impact of local joint flexibility (LJF) on the fatigue life of jacket-type offshore platforms. Four sample platforms with varying geometric properties are modeled and analyzed using the Opensees software. The analysis considers the LJF of tubular joints through the equivalent element and flexible link approaches, and the results are compared to rigid modeling. Initially, modal analysis is conducted to examine the influence of LJF on the frequency content of the structure. Subsequently, fatigue analysis is performed to evaluate the fatigue life of the joints. The comparison of fatigue life reveals that incorporating LJF leads to reduced fatigue damage and a significant increase in the longevity of the joints in the studied platforms. Moreover, as the platform height increases, the effect of LJF on fatigue damage becomes more pronounced. In conclusion, considering LJF in fatigue analysis provides more accurate results compared to conventional methods. Therefore, it is essential to incorporate the effects of LJF in the analysis and design of offshore jacket platforms to ensure their structural integrity and longevity.

Calculation of Two-Phase Turbulent Jet with a Two-Equation Model (2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.714-724
    • /
    • 1985
  • Two-phase(air-solid, air-liquid droplet) turbulent round jet has been analyzed numerically using two equation turbulence model. The mean motion of suspending particles in air has been treated as the secondary fluid with virtual density and eddy viscosity. In this paper, the local mean velocity of secondary fluid is not assumed to be the same as that of the primary one. Dissipation rate of turbulent kinetic energy which arises because the particles can not catch up with the turbulent fluctuations of the primary fluid has been modelled by using the concept of Kolmogorov's spectral energy transfer. Numerical computations were performed for flows with different volume fraction of the dispersed phase and the diameter of particle. Results show that the total rate of turbulent energy dissipation, turbulent intensities and spreading rate of jets are reduced by the increase of volume fraction of dispersed phase. However it does not show consistent tendency with increasing the particle diameter. This investigation also shows that presence of particles in the fluid modifies the structure of the primary fluid flow significantly. Predicted velocity profiles and turbulence properties qualitatively agree with available data.

Expression and Characterization of Truncated Recombinant Human Cytochrome P450 2J2

  • Park, Hyoung-Goo;Lim, Young-Ran;Han, Songhee;Kim, Donghak
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • The human cytochrome P450 2J2 catalyzes an epoxygenase reaction to oxidize various fatty acids including arachidonic acid. In this study, three recombinant enzyme constructs of P450 2J2 were heterologously expressed in Escherichia coli and their P450 proteins were successfully purified using a $Ni^{2+}$-NTA affinity column. Deletion of 34 amino acid residues in N-terminus of P450 2J2 enzyme (2J2-D) produced the soluble enzyme located in the cytosolic fraction. The enzymatic analysis of this truncated protein indicated the typical spectral characteristics and functional properties of P450 2J2 enzyme. P450 2J2-D enzymes from soluble fraction catalyzed the oxidation reaction of terfenadine to the hydroxylated product. However, P450 2J2-D enzymes from membrane fraction did not support the P450 oxidation reaction although it displayed the characteristic CO-binding spectrum of P450. Our finding of these features in the N-terminal modified P450 2J2 enzyme could help understand the biological functions and the metabolic roles of P450 2J2 enzyme and make the crystallographic analysis of the P450 2J2 structure feasible for future studies.

An Identification of Dynamic Characteristics by Spectral Analysis Technique of Linear Autoregressive Model Using Lattice Filter (Lattice Filter 이용한 선형 AR 모델의 스펙트럼 분석기법에 의한 동특성 해석)

  • Lee, Tae-Yeon;Shin, Jun;Oh, Jae-Eung
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.71-79
    • /
    • 1992
  • This paper presents a least-square algorithms of lattice structures and their use for adaptive prediction of time series generated from the dynamic system. As the view point of adaptive prediction, a new method of Identification of dynamic characteristics by means of estimating the parameters of linear auto regressive model is proposed. The fast convergence of adaptive lattice algorithms is seen to be due to the orthogonalization and decoupling properties of the lattice. The superiority of the least-square lattice is verified by computer simulation, then predictor coefficients are computed from the linear sequential time data. For the application to the dynamic characteristic analysis of unknown system, the transfer function of ideal system represented in frquency domain and the estimated one obtained by predicted coefficients are compared. Using the proposed method, the damping ratio and the natural frequency of a dynamic structure subjected to random excitations can be estimated. It is expected that this method will be widely applicable to other technical dynamic problem in which estimation of damping ratio and fundamental vibration modes are required.

  • PDF

Electrical and Optical Properties of Violet-Sensitive $SnO_2-SiO_2-Si$(n-p) Type Photocell (자색광에 민감한 $SnO_2-SiO_2-Si$(n-p)형 광전지의 전기적광하적특성)

  • 김유신
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 1977
  • We have obtained a violet-sensitive photocell as a part of the developing project on such type of solar cell. The photocell has the structure of SnO2-SiO2-Si MOS coupled on Si n-p homojuction. It is not relevant to use as a solar cell because of its small photovoltaic power(0.25V, 150$mutextrm{A}$), however, since the spectral response of the cell is shifted toward the violet band region and its switching speed is fairly high in comparison with those of the Si p-n homojunction type solar cell, it is expected that we will be able to find mere novel utilities than the ordinary silicon photocell.

  • PDF