• Title/Summary/Keyword: Structure and Thermal Properties

Search Result 1,418, Processing Time 0.026 seconds

Water Vapor and Thermal Transmission Properties of Hybrid Yarns Fabrics for High Emotional Garments -Water Vapor and Heat Transport according to Experimental-Method- (고감성 의류용 복합사 직물의 수분증기 및 열이동 특성 -실험방법에 따른 수분증기 및 열이동-)

  • Kim, SeungJin;Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.84-97
    • /
    • 2017
  • Water vapor and thermal transmission properties of high emotional garments are important to evaluate wear comfort; in addition, the measuring methods of these properties are also critical for breathable and warm suit fabrics. In this study, the water vapor and thermal properties of composite yarn fabrics made of CoolMax, Tencel, and Bamboo fibers with filaments were measured and compared according to the measuring method. Water Vapor Transmittance (WVT) of the fabric woven by the sheath/core composite yarn in the warp direction was the highest due to the small staple fiber volume in the sheath/core yarn structure and high air voids in the sheath/core yarn fabrics. This property was also the highest in fabrics woven by bamboo staple yarns in the weft direction, and was the lowest on hi-multi filament fabrics. However, water vapor resistance ($R_{ef}$) of these fabrics by KSK ISO 11092 showed the opposite results to the water vapor transmittance method ($CaCl_2$ method); in addition, its correlation coefficient was low. The correlation coefficient between $R_{ef}$ and the drying rate was 0.719; therefore, the measurement mechanism of $R_{ef}$ is analogous to the drying property measurement. The thermal conductivity of the fabrics woven with compact staple yarn showed a high value; however, the hi-multi filament fabric showed low thermal conductivity. Therefore, fiber characteristics affect thermal properties more than yarn structure. The correlation between thermal property and moisture transport was also low. This study showed that: water vapor transmittance was active at the loose yarn structure, dry heat transport was vigorous at the compact yarn structure, and heat transport was affected more by fiber characteristics than yarn structure. In conclusion, sheath/core composite yarns were relevant to the high absorptive cool suit along with siro-fil and CoolMax/Bamboo staple yarns that were relevant to the heat diffusive cool suit.

Epoxy-Based Siloxane/Silica Composites for Electronic Packaging by Composition and Molecular Structure of Siloxane, and Analysis of Changes in Properties (조성 및 실록산 분자 구조에 따른 전자 패키징용 에폭시 기반 실록산/실리카 복합체의 물성 변화 분석)

  • Junho Jang;Dong Jun Kang;Hyeon-Gyun Im
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.346-355
    • /
    • 2023
  • Epoxy-based composites find extensive application in electronic packaging due to their excellent processability and insulation properties. However, conventional epoxy-based polymers exhibit limitations in terms of thermal properties and insulation performance. In this study, we develop epoxy-based siloxane/silica composites that enhance the thermal, mechanical, and insulating properties of epoxy resins. This is achieved by employing a sol-gel-synthesized siloxane hybrid and spherical fused silica particles. Herein, we fabricate two types of epoxy-based siloxane/silica composites with different siloxane molecular structures (branched and linear siloxane networks) and investigate the changes in their properties for different compositions (with or without silica particles) and siloxane structures. The presence of a branched siloxane structure results in hardness and low insulating properties, while a linear siloxane structure yields softness and highly insulating properties. Both types of epoxy-based siloxane/silica composites exhibit high thermal stability and low thermal expansion. These properties are considerably improved by incorporating silica particles. We expect that our developed epoxy-based composites to hold significant potential as advanced electronic packaging materials, offering high-performance and robustness.

Chemo-Mechanical Analysis of Bifunctional linear DGEBF/Aromatic Amino Resin Casting Systems (DGEBF/방향족아민 경화계의 벤젠링 사이에 위치한 Methyl기와 Sulfone기가 유발하는 물성변화에 대한 연구)

  • Lee Jae-Rock;Myung In-Ho
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • To determine the effect of chemical structure of aromatic amino curing agents on thermal and mechanical properties, standard epoxy resin DGEBF (diglycidylether of bisphenol F) was cured with diaminodiphenyl methane (DDM) and diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work the effect of aromatic amino curing agents on the thermal and mechanical properties is significantly influenced by the chemical structure of curing agents. In contrast, the results show that the DGEBF/DDS system having the sulfone structure between the benzene rings had higher values in the thermal stability, density, shrinkage ($\%$), thermal expansion coefficient, tensile modulus and strength, flexural modulus and strength than the DGEBF/DDM system having methylene structure between the benzene rings, whereas the DGEBF/DDS system presented low values in maximum exothermic temperature, conversion of epoxide, and grass transition temperature. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property. The result of fractography shows that the grain distribution of DGEBF/DDS system is more irregular than that of the DGEBF/DDM system.

Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System (탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구)

  • 이경용;이관우;민지영;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

Effect of Chemical Structure on Properties of UV-Cured Polyurethane Acrylates

  • Kim, Tae-U;Heo, Jae-Ho;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.04a
    • /
    • pp.213-216
    • /
    • 1996
  • The relationship between the chemical structure and properties of UV-cured polyurethane acrylate films has been investigated. Studies have been made on the effects of the molecular weight of polyol, the types of polyol and diluents on the properties such as tensile properties and thermal properties. The glass transition temperature decreased with increasing the molecular weight of polyol. However storage modulus increased by using the diluent containing rigid structure and multifunctional acrylate monomers.

  • PDF

Study on the Structural and Thermal Properties of Modified Elastic Epoxy with Brittleness (취성 개량형 탄성에폭시의 구조 및 열적특성에 관한 연구)

  • Lee, K.Y.;Lee, K.W.;Min, J.Y.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.128-130
    • /
    • 2003
  • As toughness-investigation to improve brittleness of existing epoxy resin, elastic-factor of elastic epoxy using TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis) and FESEM (Field Emission Scanning Electron Microsope) for structure-images analysis were investigated. A range of measurement temperature of the TMA, DMTA was changed from -20[$^{\circ}C$] to 200[$^{\circ}C$]. When modifier was ratio of 0[phr], 20[phr], 35[phr], glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices. Also, it was investigated thermal expansion coefficient ($\alpha$), modulus and loss factor through DMTA. In addition, it was analyzed structure through FSSEM and made sure elastic-factor of elastic epoxy visually. As thermal analysis results, 20[phr] was superior than 30[phr] thermally and mechanically. Specially, thermal expansion coefficient, modulus, damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

  • PDF

Study on Thermal and Structural Properties of Epoxy/Elastomer Blend (에폭시/엘라스토머 블렌드의 열적 및 구조적 특성에 관한 연구)

  • Lee Kyoung-Yong;Lee Kwan-Woo;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.556-560
    • /
    • 2004
  • In this paper, thermal and structural properties of epoxy/elastomer blend were measured by DSC, TGA and FESEM. Specimens were made of dumbbell forms by the ratio of 5, 10, 15, and 20[phr] by changing elastomer content. The measuring temperature ranges of DSC were from -20[℃] to 150[℃] and heating rate was 4[℃/min]. And the measuring temperature ranges of TGA were from 0[℃] to 800[℃], and heating rate was 5[℃/min]. Also we observed structure of specimens through FESEM with magnification of 1000 times and voltage of 15[kV] by breaking quenched specimens. As experimental results, we could know that thermal and structural properties were improved according to decrease of elastomer content. Because it increased glass transition temperature, high temperature and structure of elastic epoxy.

Fabrication of Porous Materials having an Anisotropic Thermal Conductivity through the Alignment of Plate-shaped Pores (배향된 판상 기공구조를 통해 열전도도 이방성을 갖는 다공질 재료의 제조)

  • Yun, Jung-Yeol;Song, In-Hyeok;Kim, Hae-Du
    • 연구논문집
    • /
    • s.33
    • /
    • pp.147-155
    • /
    • 2003
  • In order to fabricate porous materials having an anisotropic thermal conductivity by aligning plate-shaped pores structure, alumina powder (AM-21, mean particle size $4\mum$) and flake crystalline graphite was used. The aligned pore structure was realized using multi-pressing process. Degree of pore orientation increased with the number of pressing and thermal conductivity, parallel to the pressing direction, decreased with the number of pressing. Thermal conductivity decreased significantly to the addition of 30vol% crystalline graphite, however, in the case of 60vol%, thermal conductivity did not decrease significantly due to the breakage of crystalline graphite. An anisotropy of the thermal conductivity increased with the content of crystalline graphite up to 30vol%. Graded pore structure was fabricated by controlling the content and size of crystalline graphite, which provides, possibly, the enhancement in mechanical strength and thermal insulation properties of the insulating bricks.

  • PDF

Color manipulation of silica aerogel by copper incorporation during sol-gel process

  • Lee, Sang-Seok;Park, Il-Kyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2019
  • Copper (Cu)-incorporated silica aerogel was synthesized by a sol-gel process with two-step drying process for color modification. The microstructure of the silica aerogel was not affected significantly by the Cu concentration and an amorphous structure was maintained without any crystalline impurity phases. The textural properties of the silica aerogels investigated by using N2 adsorption-desorption isotherms exhibited the typical features of mesoporous materials. The pore size and porosity were not changed significantly even with the incorporation of Cu up to 1.5 M, which indicates negligible variation of thermal insulating properties. However, the color of the aerogel changed from white and light greenish to dark greenish with increasing Cu content. The color change of the silica aerogel was due to the modification of the electron energy band structure of silica by the Cu atomic levels. Therefore, the color of the silica aerogel powders could be manipulated by incorporating Cu without degrading the thermal insulating properties.

A Study of Relations of Chain Lengths and Properties for Bifunctional linear DGEBF/Linear Amino (EDA, HMDA) Cure Systems (선형 이관능성 DGEBF/선형아민(EDA, HMDA) 경화계의 경화제 사슬길이와 물성과의 관계에 대한 연구)

  • Myung In-Ho;Lee Jae-Rock
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.37-43
    • /
    • 2004
  • To determine the effect of chain length and chemical structure of linear amine curing agents on thermal and mechanical properties, a standard bifunctional linear DGEBF epoxy resin was cured with EDA and HMDA having amine group at the both ends of main chain in a stoichiometrically equivalent ratio in condition of preliminary and post cure. From this work, the effect of linear amine curing agents on the thermal and mechanical properties is significantly influenced by numbers of carbon atoms of main chain. In contrast, the results show that the DCEBF/EDA system having two carbons had higher values in the thermal stability, density, shrinkage (%), grass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBF/HMDA system having six carbons, whereas the DGEBF/EDA cure system had relatively low values in maximum ekothermic temperature, maximum conversion of epoxide, thermal expansion coefficient than the DGEBF/HDMA cure system. These findings indicate that the packing capability (rigid property) in the EDA structure affects the thermal and mechanical properties predominantly. It shows that flexural fracture properties have a close relation to flexural modulus and strength.