• Title/Summary/Keyword: Structure and Performance Analysis

Search Result 4,024, Processing Time 0.034 seconds

Effect of PVP on CO2/N2 Separation Performance of Self-crosslinkable P(GMA-g-PPG)-co-POEM) Membranes (자가가교형 P(GMA-g-PPG)-co-POEM) 분리막의 이산화탄소/질소 분리 성능에 대한 PVP의 영향)

  • Kim, Na Un;Park, Byeong Ju;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Global warming due to indiscriminate carbon dioxide emissions has a profound impact on human life by causing abnormal climate change and ecosystem destruction. As a way to reduce carbon dioxide emissions, in this study, we presented a polymeric membrane prepared by blending a self-crosslinkable P(GMA-g-PPG)-co-POEM (SP) copolymer and commercial polymer polyvinylpyrrolidone (PVP). As the content of PVP increased, it was observed that the gas permeance decreased and $CO_2/N_2$ selectivity increased. At 30 wt% PVP content, the $CO_2$ permeance of the membrane decreased from 72.9 GPU of pure SP polymer to 12.6 GPU, while $CO_2/N_2$ selectivity improved by 79% from 28.1 to 50.4. It results from the hydrogen bonding between the SP copolymer and PVP, leading to more compact structure of the polymer chains, which was confirmed by FT-IR, TGA, XRD and SEM analysis. Therefore, we suggest that the permeance and selectivity of the membranes can be easily adjusted as desired by controlling the PVP content in the SP/PVP polymer blend.

An Effective Coverage Extension Scheme for Trisector Cellular Systems using Multi-hop Relay based on IEEE 802.16j (IEEE 802.16j 기반의 중계기를 도입한 3섹터 셀룰러 시스템에서 효율적인 기지국 커버리지 확장 기법)

  • Yoo, Chang-Jin;Kim, Seung-Yeon;Cho, Choong-Ho;Lee, Hyong-Woo;Ryu, Seung-Wan
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • In this paper, We analysis of effective coverage extension for Tri-sector cellular systems using Multi-hop Relay based on IEEE802.16j system. In the proposed international standard of IEEE 802.16j MMR (Mobile Multi-hop Relay) use of the omni-directional antenna, 3-sector and 6-sector antenna is considered to Base Station and Relay Station. Omni-directional antenna service can offer as all directions but a throughput decreases due to the signal interference of near Relay Stations. In the directional antenna, cause of an interference with the base station which it arranges an antenna so that a beam can have the direct and does with neighbor Base Station and Relay Station can be reduced interference, therefore the effective throughput is higher than the omni-directional antenna system. But, In case of Base Station and Relay Station use the directional antenna, the efficiency which the directional antenna has the Co-channel interference due to in the different cell by the channel reuse is decreased. In this study, we propose the structure of arranging the Base Station and Relay Station having the directional antenna in the NBTC, WBTC antenna in a multi-tier. It compared and analyzed with the mode that the multi-hop Relay Station has the omni-directional antenna, Relay Station are used the NBTC antenna and the WBTC antenna system also, We analyze a relation between the performance degradation and the cell coverage extension which it follows because the number of hop in the multi-hop Relay Station.

Development of 115K Tanker Design Adopted Ice Class 1A (Baltic Ice Class IA를 적용한 115K Ice Tanker 개발)

  • Kim, Hyun-Soo;Ha, Mun-Keun;Baek, Myeong-Chul;Kim, Soo-Young;Park, Jong-Woo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.120-125
    • /
    • 2004
  • There are very few numbers of 115K FPP (Fixed Pitch Propulsion) Tankers for the Baltic ice class IA because the minimum power requirement of FMA (Finish- Swedish Maritime Association) needs quite large engine power and the 40 m Beam is out of calculation range of FMA minimum power requirements. The shipyard has no choice except to increase the engine power to satisfy FMA minimum power requirement Rule. And the operation cost, efficiency of hullform and its building cost are not good from the ship owners' point of view To solve this problem, the experience of ice breaking tanker development and the ice tank test results were adopted. The main idea to reduce the ice resistance is by reducing waterline angle at design load waterline. The reason behind the main idea is to reduce the ice-clearing force. Two hull forms were developed to satisfy Baltic Ice class IA. Two ice tank tests and one towing tank test was performed at MARC (Kvaener-Masa Arctic Research Center) and SSMB (Samsung Ship Model Basin) facilities, respectively. The purpose of these tests was to verify the performance in ice and open water respectively The hull form 2 shows less speed loss compared to Hull form 1 in open water operation but hull form 2 shows very good ice clearing ability. finally the Hull Form 2 satisfying Baltic ice class IA. The merit of this hull form is to use the same engine capacity and no major design changes in hull form and other related designs But the hull structure has to be changed according to the ice class grade. The difference in two hull form development methods, ice model test methods and analysis methods of ice model test will be described in this paper.

Numerical Analysis of Magneto-Optic Performance of One-Dimensional Magneto-Photonic Crystal (1차원 자성 포토닉 결정의 자기 광학 특성 수치해석)

  • 박재혁;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.3
    • /
    • pp.99-105
    • /
    • 2000
  • One dimensional magneto-photonic crystal having structure of (A/B)$^{k/W}$(B/A)$^{k}$ , where M is a magnetic layer of highly Bi-substituted iron garnet, A and B are dielectric layers of $SiO_2$ and T $a_2$O$_{5/}$, and k is the stacking number of the dielectric layers, has been numerically analyzed as a function of the thickness (d$_{M}$) of M (1∼535 nm) and the stacking numer of k (5∼15). The transmittance, Faraday rotation, and figure of merit of the magneto-photonic crystal have been investigated both in the visible and infrared wavelengths. A factor of several and several tens greater Faraday rotation and figure of merit have been obtained compared to the single layer of M, at many localized modes. In the visible the maximum figure of merit of 0.15 was obtained ( = 720 nm) when k = 11 and d$_{M}$ = 375 nm with T : 0.54, $\theta$$_{F}$ = 8.13$^{\circ}$, which was a factor of 30 greater than that of single garnet layer. Much greater maximum figure of merit, 0.285, was obtained in the infrared ( = 1114 nm) when k = 11 and d$_{M}$ = 800 nm with T = 0.66, $\theta$$_{F}$ = 18$^{\circ}$, which was a factor of 100 greater than that of single garnet layer.

  • PDF

Approaches for Developing a Korean Model Through Analysis of Overseas Forest Soil Carbon Models (해외 산림토양탄소모델 분석을 통한 한국형 모델 개발방안 연구)

  • Lee, Ah-Reum;Yi, Koong;Son, Yo-Whan;Kim, Rae-Hyun;Kim, Choon-Sig;Park, Gwan-Soo;Lee, Kyeong-Hak;Yi, Myong-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.791-801
    • /
    • 2010
  • Forest soil carbon model is a useful tool for understanding complex soil carbon cycle in forests and estimating dynamics of soil carbon to climate change. However, studies on development and application of the model are insufficient in Korea. The need for development of Korean model is now growing, because there are notable problems and limitations for adapting overseas models in Korea to meet the requirements of the international organizations such as IPCC, which demands highly reliable data for national reports. Therefore, we have studied 7 overseas forest soil carbon models (CBM-CFS3, CENTURY, Forest-DNDC, ROMUL, RothC, Sim-CYCLE, YASSO), analyzed and compared their structure, decomposition mechanism, initializing process and, input and output data. Then we evaluated applicability of these models in Korea with three criteria; availability of input data, performance of model, and possibility of regional modification. Finally, a systematic process for applying a new model was suggested based on these analyses.

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.

Performance Evaluation of Underground Pipe with In-Situ Recycled Controlled Low Strength Materials (현장발생토사 재활용 유동성채움재를 이용한 지하매설관의 거동평가)

  • Lee Kwan-Ho;Song Chang-Seob
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.1-12
    • /
    • 2006
  • An existing Steel pipe, Cast iron pipe and Concrete pipe is can not escaped from aging, specially Metal tube is causing many problems that the quality of water worse is concerned about many rust and mike efficient use of preservation of water. The use of Glassfiber Reinforced Plastic Pipe(GRP PIPE) should be one of the possible scheme to get over these problems. The GRP PIPE has an excellent resistance power and the life is lasting from 50 to 100 years roughly. It's to be useful as a result of high durability and a good construction work also it is a light weight therefore can be expected to short the time of construction and man power. In this research, to executed the small-scaled model test, in-situ model test using CLSM of in-situ soil and to evaluated the stress - strain of the pipe also try to estimated how useful is. From the model test in laboratory, the vertical and horizontal deformation of the GRP PIPE measured in six instance using 200mm and 300mm in diameters. The value of experimentation, theory, analysis got the same results of the test, but the vertical and horizontal deformation gauged in small and the earth pressure was almost zero using CLSM of in-situ soil..

  • PDF

An Experimental Study on Field Application of Self-Compacting Concrete Using Recycled Fine Aggregate (순환잔골재를 혼입한 자기충전 콘크리트의 현장적용을 위한 실험적 연구)

  • Ryou, Jae Suk;Song, Il Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.193-203
    • /
    • 2011
  • The purpose of this study, looking to which the recycled fine aggregates from waste concrete have a lot of problems as a material for structure purpose, is applying the recycled fine aggregate to Self-Compacting Concrete(In the reminder of this paper, it often referred to as SCC) by using the characteristic which the powder containing the recycled fine aggregates can increase strength and liquidity. In this study, that is, the recycled fine aggregate powder is appropriate for developing high strength(over 40 MPa) and liquidity(JSCE 2 grade), the characteristic of the SCC and it was increased the ratio of mixing the recycled fine aggregates emerging from waste concrete and the normal fine aggregates by 25%, making differential in total 5 levels and applied to SCC. After all, this study was reviewed the physical properties of the fresh concrete, analyzed the mechanical properties and durability of the hardening concrete and tried to ensure the possibility of utilizing the recycled fine aggregates as a material for SCC. As a result, this study reached a conclusion that among the 5-level replacement ratios of the physical, mechanical analysis and the durability characteristics, the normal fine aggregates could be applied up to a replacement ratio of 50% more than the recycled fine aggregates and resulted in a deterioration in performance the replacement ratio larger than 50%. It is judged that the applicability of the real structures should be followed up in order to check the possibility of applying the recycled fine aggregates to real life.

Design and fabrication of Ka-band high-power, high-efficiency spatial combiner using TM01 mode Transducer (TM01 모드 변환을 이용한 Ka 대역 고출력 고효율 공간 결합기 설계 및 제작)

  • Kim, Hyo-Chul;Cho, Heung-Rae;Lee, Ju-Heun;Lee, Deok-Jae;An, Se-Hwan;Lee, Man-Hee;Joo, Ji-Han;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.25-32
    • /
    • 2021
  • In this study, it proposes a mode converter that is relatively easy to implement and can shorten the transmission line length of the final combining port and it was fabricated and tested by applying it to an 8-way spatial combiner. The proposed mode converter converts the signal converted from the doorknob-shaped circular disk connected to the ground into the TM01 mode by opening it in the circular waveguide. The 8-way waveguide spatial combiner is designed and implemented so that 8 signals input from the H-plane are combined in a circular waveguide at the center, and the final combining mode is TM01. The test results confirmed excellent performance with an insertion loss of less than 0.4dB and a combining efficiency of 95% or more. In addition, it was confirmed that it is suitable for high output by calculating the breakdown voltage and discharge threshold power of the new mode conversion structure through electric field analysis. The results confirmed through this study are expected to be applicable to high-power, high-efficiency SSPA in various fields in the future.

Effect of Curing Solution and Pre-Rust Process on Rebar Corrosion in the Cement Composite (시멘트 복합체 내부 철근 부식에 양생 용액과 철근 사전 부식이 미치는 영향)

  • Du, Rujun;Jang, Indong;Lee, Hyerin;Yi, Chongku
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The corrosion of reinforcement is the main reason for the performance degradation of concrete structures. The pre-rusted parts of rebar in concrete structures are vulnerable to the corrosion, especially if the structure is exposed to wet or chlorinated environments. In this study, effects of different curing solution on corrosion behavior of the pre-rusted rebars in the cement composites were investigated. HCl(3%) and CaCl2(10%) solution were utilized to accelerate the pre-rust of the rebar, and each pre-rust condition rebar including reference (RE) were placed in mortar cylinder. Three kinds of samples then were cured in CaCl2 (3%) solution and tap water respectively for 120 days. Electrochemical polarization and half-cell potential measurement were used to monitor the influence of curing water on the corrosion behavior of pre-rusted steel bar in cement composite. The surface morphology and composition of corroded steel bar were analyzed by scanning electron microscope and energy dispersive X-ray diffraction. The results show that the corrosion rates of pre-rusted samples in both curing water are higher than that of non-pre-rusted samples. The corrosion rates of RE, CaCl2 and HCl pre-rusted samples in salt water were 8.14, 4.48, 13.81 times higher than those in tap water respectively, on the 120th day.