• 제목/요약/키워드: Structure Stability

검색결과 4,041건 처리시간 0.031초

Blue dye의 Chromophore와 치환기에 따른 열안정성 특성 연구 (A Study of Thermal-stability of Blue Dyes Depending on Dye Chromophore and Substituents)

  • 김태헌;이주홍;강은진;최재홍
    • 한국염색가공학회지
    • /
    • 제33권4호
    • /
    • pp.169-181
    • /
    • 2021
  • Five dyes based on phthalocyanine, a dye on azo, and a dye on anhraquinone were prepared from corresponding starting material to investigate the effects of substituent on thermal-stability of dyes which is essentially required to apply to the color filters. Synthesized dyes were confirmed their chemical structure using by 1H-NMR, MASS and Elemental analysis. The thermal-stability was evaluated by the weight reductions measured by TGA analysis comparing to that of conventional C.I. Pigment Blue 15:6. The absorption maxima were measured by UV-VIS spectrophotometer then the effects of substituent on absorption maximum was also investigated.

DIFFUSIVE AND STOCHASTIC ANALYSIS OF LOKTA-VOLTERRA MODEL WITH BIFURCATION

  • C.V. PAVAN KUMAR;G. RANJITH KUMAR;KALYAN DAS;K. SHIVA REDDY;MD. HAIDER ALI BISWAS
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.11-31
    • /
    • 2023
  • The paper presents a critical analysis of selected topics related to the modeling of interacting species in which prey has nonlinear reproduction, which is in competition with predator. The mathematical model's stochastic stability is investigated. The method of designing appropriate Lyapunov functions is used to identify permanence conditions among the parameters of the model and conditions for the structure to no longer be extinct. The system's two-dimensional diffusive stability is regarded and studied. The system experiences the process of saddle-node bifurcation by varying the death rate of predator parameter. Further effects of parameters that undergo inherent oscillations are numerically investigated, revealing that as the intensity of predation parameter b is increased, the device encounters non-periodic and damped oscillations.

Stability Analysis of the Magnetic Structures Producing an M6.5 Flare in active region 12371

  • Kang, Jihye;Inoue, Satoshi;Kusano, Kanya;Park, Sung-Hong;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.41.1-41.1
    • /
    • 2019
  • The stability analysis of coronal magnetic structures is important for studying the initiation of solar flares and eruptions. In order to understand the flare onset process, we first reconstructed the 3D coronal magnetic structures of active region 12371 with an M6.5 flare using a nonlinear force-free field (NLFFF) model based on vector magnetic fields. The NLFFFs successfully produce the observed sigmoidal structure which is composed of two branches of sheared arcade loops. The stability analysis were examined for three representative MHD instabilities: the kink, the torus, and the double arc instabilities. Our stability analysis shows that the two branches of sheared arcade loops are quite stable against the kink and torus instabilities, but unstable against the double arc instability before the flare occurrence. Finally, we discuss a probable onset process of the M6.5 flare.

  • PDF

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.

근접시공에 따른 정거장구조물 거동특성에 관한 연구 (A Study on the Behaviour of the Station Structure due to Adjacent Construction)

  • 정지승;김만화;이선길;김홍주;신영완
    • 한국지반환경공학회 논문집
    • /
    • 제17권11호
    • /
    • pp.55-64
    • /
    • 2016
  • 최근 지하공간을 활용한 도시의 기반시설 확충으로 인하여 시설물 상호 간의 근접시공이 많이 이루어지고 있으며, 근접시공으로 인한 시설물의 안정성과 관련된 민원이 빈번하게 발생하고 있는 실정이다. 본 연구에서는 근접시공으로 인한 정거장구조물의 거동특성을 파악하기 위해 김포도시철도 터널이 계획된 노선 상부의 지하철 5호선 김포공항역 정거장구조물을 대상으로 연구를 수행하였다. 정거장구조물의 안전영역 평가 및 굴착방법에 대한 개략적인 검토와 수치해석을 통한 상세검토를 수행하였으며, 손상도 평가, 궤도틀림 및 구조검토 결과 근접시공에 따른 정거장구조물의 안정성은 확보되는 것으로 평가되었다. 본 연구는 근접시공시 인접구조물에 미치는 영향을 사전에 검토하는 경우 기초자료로 활용될 수 있을 것으로 기대된다.

점성토지반속 주열식 흙막이벽의 설계법 (A Design Method of Earth-Retaining Structure Constructed by a Row of Bored Piles in Cohesive Soils)

  • 홍원표;권우용;고정상
    • 한국지반공학회지:지반
    • /
    • 제5권3호
    • /
    • pp.29-38
    • /
    • 1989
  • 도시내 지하굴착공사에 저진동, 저소음의 장점이 있어 많이 사용될 수 있는 주열식 흙막이벽편 말뚝의 설계법이 제안되며, 그 실용성이 설계례를 통하여 검토된다. 먼저 점성토지반 속에 설치된 주렬식 흙막이말뚝의 저항력 산정식이 굴착 저면을 기준으로 상부와 하부지반에 대하여 각카 제시 된다. 이 산정식의 특징은 지반특성과 말뚝의 설치간격을 합리적으로 고려할 수 있자는 점이다. 이 저항력 산정식을 활용하여 흙막이 말뚝의 안정해절법이 확립된다. 흙막이 말뚝의 설계는 말뚝의 안 정성과 지반의 안정성을 동시에 만족시키는 범위에서 책시되며, 지반의 안정성 검토시에는 굴착 저 부에서의 정토지반 융기현상에 대한 안전검토도 실시된다.

  • PDF

Thermodynamic Analysis of the Low- to Physiological-Temperature Nondenaturational Conformational Change of Bovine Carbonic Anhydrase

  • Hollowell, Heather N.;Younvanich, Saronya S.;McNevin, Stacey L.;Britt, B. Mark
    • BMB Reports
    • /
    • 제40권2호
    • /
    • pp.205-211
    • /
    • 2007
  • The stability curve - a plot of the Gibbs free energy of unfolding versus temperature - is calculated for bovine erythrocyte carbonic anhydrase in 150 mM sodium phosphate (pH = 7.0) from a combination of reversible differential scanning calorimetry measurements and isothermal guanidine hydrochloride titrations. The enzyme possesses two stable folded conformers with the conformational transition occurring at ~30$^{\circ}C$. The methodology yields a stability curve for the complete unfolding of the enzyme below this temperature but only the partial unfolding, to the molten globule state, above it. The transition state thermodynamics for the low- to physiological-temperature conformational change are calculated from slow-scan-rate differential scanning calorimetry measurements where it is found that the free energy barrier for the conversion is 90 kJ/mole and the transition state possesses a substantial unfolding quality. The data therefore suggest that the x-ray structure may differ considerably from the physiological structure and that the two conformers are not readily interconverted.

마이크로 스케일 난류에 의한 화염안정성 및 NOx 생성 (Flame Stability and NOx Formation by Micro scale Turbulence)

  • 김인수;서정무;이근선;이충원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.57-62
    • /
    • 2001
  • The effect of micro scale turbulence on flame structure and stability were experimentally investigated by changing the area of micro turbulence generator(MTG) and air velocity in terms of low NOx and high efficiency combustion. NOx and CO concentration were also measured for different MTG areas to investigate whether a vane swirler having MTG has a possibility of using as part for low NOx combustor. From the obtained results, it is shown that flame stability region increases and flame size becomes small as MTG area increases since MTG in itself makes small scale recirculation flow and swirler does large scale recirculation one. It is also shown that low NOx concentration(about 20${\sim}$30ppm@$O_2$ 11%) is achieved for all MTG areas without any increase in CO concentration regardless of air velocity range tested in this study when the equivalence ratio is 0.7. The results obtained in this study can give basic guideline for the design of compact low NOx high efficiency combustor using a vane swirler having MTG.

  • PDF

나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가 (Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties)

  • 박수진;신헌철
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.