• Title/Summary/Keyword: Structure Modification

Search Result 1,148, Processing Time 0.024 seconds

초음파 나노 표면개질 기술의 정하중 레벨이 SKD61 강의 피로특성에 미치는 영향 (Effect of Static Load Level of Ultrasonic Nanocrystal Surface Modification Technology on Fatigue Characteristics of SKD61)

  • 서창민;김성환
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.99-105
    • /
    • 2008
  • Ultrasonic nanocrystal surface modification (UNSM) is a method to induce severe plastic deformation to a material surface, so that the structure of the material surface becomes a nanocrystal structure from the surface to a certain depth. It improves the mechanical properties, namely hardness, compressive residual stress, and fatigue characteristics. Specimens of SKD61 were tested to verify the effects of the variation of UNSM static load level on fatigue characteristics. The results were as follows: the grain size of SKD61 treated with UNSM became very fine from the material surface to a $100{\mu}m$ depth. The surface hardness of SKD61 was increased up to 37% after UNSM. And fatigue strength at $10^7$ cycles was increased by 8.3, 11.2, and 17.9% respectively, when the static load levels of UNSM were 4, 6, 8 kgf.

Characterization of Modified Peptides by Tandem Mass Spectrometry

  • Chang, Yoon-Seok;Jang, Jung-Suk
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.849-854
    • /
    • 1995
  • A series of biologically active phosphopeptides were synthesized and their behavior in tandem mass spectrometry have been investigated. The structure identifications of other unusual peptides such as sulphated, glycosylated, lipoidal, and backbone modified peptides have been carried out. For all tested peptides, the structural modification could be determined directly by measurement of the absolute molecular weight in combination with collision-induced-dissociation in tandem mass spectrometry.

  • PDF

Structure Development and Dynamic Properties in High-speed Spinning of High Molecular Weight PEN/PET Copolyester Fibers

  • Im, Seung-Soon;Kim, Sung-Joong
    • Fibers and Polymers
    • /
    • 제3권1호
    • /
    • pp.18-23
    • /
    • 2002
  • The structure development and dynamic properties of fibers produced by high-speed spinning of P(EN-ET) random copolymers were investigated. The as-spun fibers were found to remain amorphous up to the spinning speed of 1500 m/min, and subsequent increases in speed resulted in the crystalline domains containing primarily $\alpha$ crystalline modification of PEN. The f modification was not found up to spinning speeds of 4500 m/min. On the other hand, annealing of constrained fibers spun at the 2100 m/min at 180,200, and 240^{\circ}C$ exhibited $\beta$-form crystalline structure, while the annealed fibers spun in 600-1500 m/min range exhibited dominantly $\alpha$-form. However $\beta$-form crystals disappeared above the spinning speed of 3000 m/min. With increasing spinning speeds from 600 to 4500 m/min, the storage modulus of as-spun fibers increased continuously and reached a value of about 10.4 spa at room temperature. The tan $\delta$curves showed the $\alpha$-relaxation peak at about 155-165^{\circ}C$, which is considered to correspond to the glass transition. The $\alpha$-relaxation peaks became smaller and broader, and shift to higher temperatures as the spinning speed increases, meaning that molecular mobility in the amorphous region is restricted by increased crystalline domain.

The Effect of Cellulase on the Pore Structure of Cellulose Fibers

  • Park, Sun-Kyu;Venditti Richard A.;Abrecht David G.;Jameel Hasan;Pawlak Joel J.;Lee, Jung-Myoung
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.43-49
    • /
    • 2006
  • The surface and pore structure of cellulose fibers have a significant impact on the properties and performance in applications. Cellulase enzymatic hydrolysis of cellulose fibers can result in changes to the surface and pore structure thus providing a useful tool for fiber modification. This research characterizes these changes using various test methods such as fiber dimension, water retention value, hard-to-remove water content, freezing and non-freezing bound water content, polymer adsorption, and crystallinity index. For a high-dosage enzyme treatment (0.10 g/g), the fiber length was significantly decreased and the fibers were 'cut' in the cross direction, not in the axial direction. The swelling capacities as measured by the WRV and HR water content increased for the high-dosage treatment. Three independent measurements (non-freezing bound water, polymer adsorption, and crystallinity index) are in good agreement with the statement that the amorphous regions of cellulose fibers are a more readily available substrate relative to crystalline regions. Based on the experimental results obtained herein, a model was proposed to explain surface and pore structure modification of cellulose fibers via enzymatic treatment.

  • PDF

Photoinduced Singlemode Waveguide in Optical Fluoride Glasses Using Plasma Filaments

  • Cho, Sung-Hak
    • Journal of the Optical Society of Korea
    • /
    • 제7권3호
    • /
    • pp.156-159
    • /
    • 2003
  • Permanent structure of photoinduced singlemode waveguide in optical fluoride glasses was demonstrated using the self-channeled plasma filament excited by a femtosecond (110 fs) Ti:sapphire laser ($λ_p$ = 800 nm). The photoinduced refractive index modification in ZBLAN glasses reached a length of approximately 10 - 15 mm from the input surface of the optical glass with the diameters ranging from 5 to 8 ${\mu}{\textrm}{m}$ at input intensities more than l.0 ${\times}$ $10^{12}$ W/$\textrm{cm}^2$. The graded refractive index profiles were fabricated to be a symmetric form from the center of an optical fluoride glass and a maximum value of refractive index change (ㅿn) was measured to be l.3${\times}$$10^{-2}$. The beam profile of the output beam transmitted through the modified region showed that the photoinduced refractive index modification produced a permanent structure of singlemode waveguide.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

키토산처리에 의한 텐셀 직물의 개질기능화(I) - 물성 변화를 중심으로 - (Modification of Tencel Fabric Treated with Chitosan ( I ) - Change of Physical Properties -)

  • 배현숙;육은영
    • 한국염색가공학회지
    • /
    • 제14권1호
    • /
    • pp.18-26
    • /
    • 2002
  • Chitosan has reactive amino and hydroxyl groups which can be used to chemically alter its properties under the mild reaction conditions. Thus the cationization of Tencel with Chitosan is effective to modify the fabric. To investigate the modified properties of Tencel fabric, the tests were performed under the several finishing process with enzyme/glutaraldehyde/softener. The internal structure of Tencel which has the structure of cellulose II wasn't changed by enzyme, chitosan and crosslinking agent treatment and the thermal stability was improved by chitosan and crosslinking agent treatment. Wrinkle recovery angle under the dry condition increased highly until $0.1\textrm{mol}/\ell$ of glutaraldehyde concentration, and then decreased. Tensile strength of modified Tencel fabric decreased with increasing of weight loss, but it was improved more or less by chitosan, crosslinking agent and softener. Moisture regain was improved by enzyme and chitosan treatment. And antibacterial activity showed nearly 100% on Tencel fabric treated with 0.5% chitosan and adsorption of metal ion increased with increasing of chitosan concentration.

A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives

  • Magar, Rubin Thapa;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.11-20
    • /
    • 2020
  • Quercetin and its derivatives are important metabolites that belong to the flavonol class of flavonoids. Quercetin and some of the conjugates have been approved by the FDA for human use. They are widely distributed among plants and have various biological activities, such as being anticancer, antiviral, and antioxidant. Hence, the biosynthesis of novel derivatives is an important field of research. Glycosylation and methylation are two important modification strategies that have long been used and have resulted in many novel metabolites that are not present in natural sources. A strategy for modifying quercetin in E. coli by means of glycosylation, for example, involves overexpressing respective glycosyltransferases (GTs) in the host and metabolic engineering for increasing nucleoside diphosphate sugar (NDP-sugar). Still others have used microorganisms other than E. coli, such as Streptomyces sp., for the biotransformation process. The overall study of the structural activity relationship has revealed that modification of some residues in quercetin decreased one activity but increased others. This review summarizes all of the information mentioned above.

Lamellar 이차침전지에서의 침강 특성 파악 (Evaluation of Settling Characteristics at Lamellar Secondary Clarifier)

  • 이병희
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.471-478
    • /
    • 2012
  • Where an activated sludge system needs to be converted to biological nutrient removal(BNR) system, the secondary clarifier must handle higher MLSS from bioreactor since nitrification in BNR system that requires higher SRTs than activated sludge system. Either increase the clarifier size or modification of clarifier physical structure is required to cope with MLSS surge. One of recommended structural modification is the insertion of Lamellar within clarifier. In this study, two clarifiers - one has Lamellar structure inserted and the other does not - were used to compare the effect of Lamellar in solid/liquid separation. Same MLSS was fed to both clarifiers and concentrations of MLSS were varied. With all MLSS concentrations, attachment of MLSS on Lamellar was observed and it was found that detached MLSS caused the higher effluent SS concentrations than that of non-Lamellar clarifier effluent. From these results, Lamellar should not be inserted in clarifier to handle MLSS from BNR processes and the recommendation must be withdrawn.

A Low Dark Current CMOS Image Sensor Pixel with a Photodiode Structure Enclosed by P-well

  • Han, Sang-Wook;Kim, Seong-Jin;Yoon, Eui-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.102-106
    • /
    • 2005
  • A low dark current CMOS image sensor (CIS) pixel without any process modification is developed. Dark current is mainly generated at the interface region of shallow trench isolation (STI) structure. Proposed pixel reduces the dark current effectively by separating the STI region from the photodiode junction using simple layout modification. Test sensor array that has both proposed and conventional pixels is fabricated using 0.18 m CMOS process and the characteristics of the sensor are measured. The result shows that the dark current of the proposed pixel is 0.93fA/pixel that is two times lower than the conventional design.