• Title/Summary/Keyword: Structure Layer

Search Result 6,667, Processing Time 0.037 seconds

Study on the Water-Vapor Permeation through the Al Layer on Polymer Substrate (폴리머 기판에 형성한 알루미늄 보호막의 수분침투 특성 연구)

  • Choi, Young-Jun;Ha, Sang-Hoon;Park, Ki-Jung;Choe, Youngsun;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.873-880
    • /
    • 2009
  • Water-vapor permeation through metallic barriers deposited on polymer substrates has been an important technological issue because the performance of the barrier is critical to the reliability of flexible organic devices. For the development of long-lifetime flexible organic devices, two different sets of samples were designed and demonstrated from the viewpoint of the water-vapor transmission rate (WVTR). Aluminum (Al) and polyethylene terephthalate (PET) were chosen for the barrier layer and the polymer substrate, respectively. Two stacking structures, a single-layer (Al/PET) structure and a double-layer (Al/PET/Al) structure, were used for the WVTR measurement. For the single-layer structure, the WVTR decreases as the thickness of the barrier layer increases. Compared to the single-layer sample, the double-layer sample showed superior WVTR performance (by nearly three times) when the total thickness of the Al barrier was greater than 100 nm.

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Clinical anatomic consideration of the superficial layer of the masseter muscle for botulinum toxin injection (보툴리눔 톡신 주사를 위한 깨물근 얕은층의 임상해부학적 고찰)

  • Lee, Hyung-Jin;Kim, Hee-Jin
    • The Journal of the Korean dental association
    • /
    • v.55 no.5
    • /
    • pp.365-369
    • /
    • 2017
  • In clinical dentistry, botulinum toxin is generally used to treat the square jaw, bruxism, and temporomandibular joint diseases. Recently, this procedure has been expanded and applied for cosmetic purposes, and it is becoming a key task to be aware of the precise anatomical structure of the target muscles to be cautious during treatment and how to prevent side effects. Therefore, the purpose of this study is to observe the anatomical structure of the superficial layer of masseter muscle and to provide a most effective botulinum toxin injection method through clinical anatomical consideration. It was observed that the muscle belly of superficial part of the superficial layer was originated from the deep to the aponeurosis of masseter muscle and descend, then changed gradually into the tendon structure attaching to the inferior border of the mandible. In this study, we named this structure deep inferior tendon. This structure was observed in all specimens. We conclude that the use of superficial layer and deep layer injection should be considered to prevent paradoxical masseteric bulging in consideration of the deep inferior tendon of superficial part of superficial layer of masseter muscle.

  • PDF

Material and Manufacturing Properties of Bracket Mural Paintings of Daeungjeon Hall in Gaeamsa Temple, Buan

  • Lee, Hwa Soo;Yu, Yeong Gyeong;Han, Kyeong-Soon
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.45-54
    • /
    • 2022
  • This study examined the production technique of bracket murals in Daeungjeon Hall, Gaeamsa Temple by conducting a analysis of their wall structure, material characteristics, and painting layers. Wall was a single-branch structure with support layer, middle layer, finishing layer, and painting layer. The support layer, middle layer and finishing layer, were produced by mixing sand (quartz, feldspars etc.), and loess. The ratio of above medium sand to below fine sand was approximately 0.7 : 9.3 in the support layer, 4 : 6 in the middle layer and 6 : 4 in the finishing layer, which had a more percentage of above medium sand than the support layer. The analysis of the painting layer showed that natural soil pigment was used to establish a relatively ground layer of up to 50 ㎛, and pigments such as Lead sulfate, atacamite and mercury sulfide were painted on top of the layer. This study's results confirmed that the bracket mural paintings in Gaeamsa Temple are within the category of the production style of murals during the Joseon period. However, the points that the middle layer was formed several times, the significant difference in particle size distribution between the wall, and the absence of chopped straw in the support layer are a feature of bracket mural paintings in Gaeamsa Temple. These properties of murals as material and structure may be viewed for correlation with the degree of damage to wall structure of mural painting and would serve as an important reference to diagnosis the conservation conditions of murals or prepare conservation treatments.

Design of new CNN structure with internal FC layer (내부 FC층을 갖는 새로운 CNN 구조의 설계)

  • Park, Hee-mun;Park, Sung-chan;Hwang, Kwang-bok;Choi, Young-kiu;Park, Jin-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.466-467
    • /
    • 2018
  • Recently, artificial intelligence has been applied to various fields such as image recognition, image recognition speech recognition, and natural language processing, and interest in Deep Learning technology is increasing. Many researches on Convolutional Neural Network(CNN), which is one of the most representative algorithms among Deep Learning, have strong advantages in image recognition and classification and are widely used in various fields. In this paper, we propose a new network structure that transforms the general CNN structure. A typical CNN structure consists of a convolution layer, ReLU layer, and a pooling layer. Therefore in this paper, We intend to construct a new network by adding fully connected layer inside a general CNN structure. This modification is intended to increase the learning and accuracy of the convoluted image by including the generalization which is an advantage of the neural network.

  • PDF

Super Junction LDMOS with N-Buffer Layer (N 버퍽층을 갖는 수퍼접합 LDMOS)

  • Park Il-Yong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.72-75
    • /
    • 2006
  • A CMOS compatible Super Junction LDMOS (SJ-LDMOS) structure, which reduces substrate-assisted depletion effects, is reported. The proposed structure uses a N-buffer layer between the pillars and P-substrate to achieve global charge balance between the pillars, the N-buffer layer and the P-substrate. The new structure features high breakdown voltage, low on-resistance, and reduced sensitivity to doping imbalance in the pillars.

Determination of Member Force Ratios for Self-equilibrium State of Multi-Layered Cable Dome Type Structures (다층 케이블 돔형 구조물의 자기평형을 위한 부재력 비율 결정)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.75-82
    • /
    • 2013
  • For each cable component in a cable dome structure, pre-tension is needed for stability of whole the structure. The summation of these pre-tension at each joint should be zero to achieve the self equilibrium structure. The first step in cable dome structure analysis is to find the ratio of pre-tension in each member which can produce a stable and structure on self-equilibrium. In this paper, a new method based on the basic principle of closed force polygon for equilibrium system is proposed for the determination of self-equilibrium mode of cable dome structure. A single layer cable dome and two multi layer type domes have been analyzed. The ratios of cable members are determined by the presented method, and check the validation of the results by numerical calculation.

CNN Applied Modified Residual Block Structure (변형된 잔차블록을 적용한 CNN)

  • Kwak, Nae-Joung;Shin, Hyeon-Jun;Yang, Jong-Seop;Song, Teuk-Seob
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.803-811
    • /
    • 2020
  • This paper proposes an image classification algorithm that transforms the number of convolution layers in the residual block of ResNet, CNN's representative method. The proposed method modified the structure of 34/50 layer of ResNet structure. First, we analyzed the performance of small and many convolution layers for the structure consisting of only shortcut and 3 × 3 convolution layers for 34 and 50 layers. And then the performance was analyzed in the case of small and many cases of convolutional layers for the bottleneck structure of 50 layers. By applying the results, the best classification method in the residual block was applied to construct a 34-layer simple structure and a 50-layer bottleneck image classification model. To evaluate the performance of the proposed image classification model, the results were analyzed by applying to the cifar10 dataset. The proposed 34-layer simple structure and 50-layer bottleneck showed improved performance over the ResNet-110 and Densnet-40 models.

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

Bi-layer Gravure Printed Organic Light Emitting Layers with MEH-PPV and Rubrene

  • Kim, A-Ran;Lee, Hye-Mi;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1508-1510
    • /
    • 2009
  • In this work, we have compared OLED devices made of blended MEH-PPV/Ruburene mixture and MEH-PPV/Rubrene bi-layer structure devices. The emission layers were made with two different ways - one with gravure printed single layer of blended mixture of MEH-PPV and rubrene, the other with gravure printed bilayers of MEH-PPV and rubrene. Both brightness and efficiency with gravure printed bi-layer devices were higher than blended devices. In this work, we demonstrated that organic bi-layers can be formed with gravure printing technology and higher efficiency can be achieved with bi-layer structure than with blended single layer structure.

  • PDF