Study on the Water-Vapor Permeation through the Al Layer on Polymer Substrate

폴리머 기판에 형성한 알루미늄 보호막의 수분침투 특성 연구

  • Choi, Young-Jun (Dept. of Materials Science and Engineering, Pusan National University) ;
  • Ha, Sang-Hoon (Dept. of Materials Science and Engineering, Pusan National University) ;
  • Park, Ki-Jung (Dept. of Materials Science and Engineering, Pusan National University) ;
  • Choe, Youngsun (Dept. of Chemical Engineering, Pusan National University) ;
  • Cho, Young-Rae (Dept. of Materials Science and Engineering, Pusan National University)
  • 최영준 (부산대학교 재료공학과) ;
  • 하상훈 (부산대학교 재료공학과) ;
  • 박기정 (부산대학교 재료공학과) ;
  • 최영선 (부산대학교 응용화학공학부) ;
  • 조영래 (부산대학교 재료공학과)
  • Received : 2009.07.31
  • Published : 2009.12.20

Abstract

Water-vapor permeation through metallic barriers deposited on polymer substrates has been an important technological issue because the performance of the barrier is critical to the reliability of flexible organic devices. For the development of long-lifetime flexible organic devices, two different sets of samples were designed and demonstrated from the viewpoint of the water-vapor transmission rate (WVTR). Aluminum (Al) and polyethylene terephthalate (PET) were chosen for the barrier layer and the polymer substrate, respectively. Two stacking structures, a single-layer (Al/PET) structure and a double-layer (Al/PET/Al) structure, were used for the WVTR measurement. For the single-layer structure, the WVTR decreases as the thickness of the barrier layer increases. Compared to the single-layer sample, the double-layer sample showed superior WVTR performance (by nearly three times) when the total thickness of the Al barrier was greater than 100 nm.

Keywords

References

  1. A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, IEEE J. Sel. Topics Quantum Electron. 10, 107 (2004) https://doi.org/10.1109/JSTQE.2004.824112
  2. J. Greener, K. C. Ng, K. M. Vaeth, and T. M. Smith, J. Appl. Polym. Sci. 106, 3534 (2007) https://doi.org/10.1002/app.26863
  3. C. Jang, Y. R. Cho, and B. Han, Appl. Phys. Lett. 93, 13307(2008)
  4. J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, Met. Mater. Int. 14, 745 (2008) https://doi.org/10.3365/met.mat.2008.12.745
  5. Y. J. Choi, N. H. Kwon, S. H. Ha, K. J. Park, H. B. Kim, and Y. R. Cho, Electron. Mater. Lett. 5, in press (2009)
  6. C. Charton, N. Schiller, M. Fahland, A. Hollander, A. Wedel, and K. Noller, Thin Solid Films. 502, 99 (2006) https://doi.org/10.1016/j.tsf.2005.07.253
  7. A. G. Erlat, B. M. Henry, J. J. Ingram, D. B. Mountain, A. McGuigan, R. P. Howson, C. R. M. Grovenor, G. A. D. Briggs, and Y. Tsukahara, Thin Solid Films. 388, 78 (2001) https://doi.org/10.1016/S0040-6090(01)00836-7
  8. S. Vasquez-Borucki, W. Jacob, and C. A. Achete, Diamond Relat. Mater. 9, 1971 (2000) https://doi.org/10.1016/S0925-9635(00)00348-4
  9. E. M. Moser, R. Urech, E. Hack, H. Kunzli, and E. Muller, Thin Solid Films. 317, 388 (1998) https://doi.org/10.1016/S0040-6090(97)00555-5
  10. C. H. Moon, J. Kor. Inst. Met. & Mater. 46, 97 (2008)
  11. J. H. Kim, J. W. Han, Y. H. Kim, and D. S. Seo, J. KIEEME. 19, 255 (2006) https://doi.org/10.4028/www.scientific.net/KEM.309-311.255
  12. A. Gruniger and P. R. Rohr, Thin Solid Films. 459, 308(2004) https://doi.org/10.1016/j.tsf.2003.12.146
  13. R. S. Kumar, M. Auch, E. Ou, G. Ewald, and S. J. Chua, Thin Solid Films. 417, 120 (2002) https://doi.org/10.1016/S0040-6090(02)00584-9
  14. K. H. Kim, J. W. Lee, Y. C. Kim, B. K. Ju, and J. K. Kim, J. KIEEME. 17, 432 (2004) https://doi.org/10.4313/JKEM.2004.17.4.432
  15. Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. Kharrazi Olsson, and F. Atamny, Thin Solid Films. 460, 156 (2004) https://doi.org/10.1016/j.tsf.2004.01.052
  16. Y. Leterrier, Prog. Mater. Sci. 48, 1 (2003) https://doi.org/10.1016/S0079-6425(02)00002-6
  17. E. Bringuier, Physica A. 388, 2588 (2009) https://doi.org/10.1016/j.physa.2009.03.010