• Title/Summary/Keyword: Structure H Hydrate

Search Result 32, Processing Time 0.026 seconds

The Crystal and Molecular Structure of Sodium Sulfisoxazole hexahydrate (Sodium Sulfisoxazole Hexahydrate의 결정 및 분자구조와 수소결합에 관한 연구)

  • Young Ja Park;Chung Hoe Koo
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1976
  • The crystal structure of sodium sulfisoxazole hexahydrate, $C_{11}H_{12}N_3O_3SNa{\cdot}6H_2O$,has been determined by X-ray diffraction method. The compound crystallizes in the monoclinic space group $$P2_1}c$$ with a = 15.68(3), b = 7.70(2), c = 17.94(4)${\AA}$, ${\beta}$ = $118(2)^{\circ}$ and Z = 4. A total of 1717 observed reflections were collected by the Weissenberg method with $CuK{\alpha}$ radiation. Structure was solved by heavy atom method and refined by block-diagonal least-squares methods to the R value of 0.14. The conformational angle formed by the S-C(l) bond with that of N(2)-C(7), when the projection in taken along the S-N(2), is $73^{\circ}.$ The benzene ring is planar and makes an angle of $60^{\circ}$ with the plane of the isoxazole ring, which is also planar. The sodium atom has a distorted octahedral coordination of N(l) and five oxygen atoms from hydrate molecules. Sodium sulfisoxazole hexahydrate shows fourteen different hydrogen bondings in the crystal. These are six $O-H{\cdots}O-H bonds, three $O-H{\cdots}O$ bonds, two $O-N{\cdots}N,$ one $N-H{\cdots}O,O-H{\cdots}N,N-H{\cdots}O-H$ bond, with the distances in the range of 2.71 to $3.04{\AA}.$.

  • PDF

Development of Bottom Ash Replacement Cement Using Diethanol Isopropanolamine (Diethanol Isopropanolamine을 활용한 바텀애시 치환 시멘트 개발)

  • Hyunuk Kang;Ahyeon Lim;Juhyuk Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.72-81
    • /
    • 2024
  • In this study, DEIPA was used for enhancing cementitious performance of bottom ash replaced cement. By applying the partial or no-known crystal structure method to X-ray diffraction data, the amounts of amorphous bottom ash and calcium silicate hydrate(C-S-H) could be separated and quantified. In the sample without DEIPA, the bottom ash hardly reacted, resulting in low compressive strength. However, the addition of DEIPA not only altered the hydration behavior of the cement but also enhanced the pozzolanic reaction between bottom ash and calcium hydroxide, leading to the generation of additional C-S-H. This resulted in high compressive strength not only in the early stages but also in the later stages. Therefore, with the addition of DEIPA during the pulverization of the bottom ash, the reactivity of the bottom ash was significantly improved. Hence, there is potential in the development of bottom ash replacement cement.

Spectroscopic Identifications and Phase Equilibria of THF + 3-OH THF + CH4 Clathrate Hydrates (삼성분계 THF + 3-OH THF + CH4 크러스레이트 하이드레이트의 상평형 거동 해석 및 분광학적 분석)

  • Kim, Heejoong;Ahn, Yun-Ho;Moon, Seokyoon;Hong, Sujin;Park, Youngjune
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.353-357
    • /
    • 2017
  • In this study, the inclusion phenomena of tetrahydrofuran + 3-hydroxytetrahydrofuran + $CH_4$ clathrate hydrates were explored via thermodynamic and spectroscopic approaches. The phase equilibria of the double hydrates - THF + $CH_4$ and 3-OH THF + $CH_4$ clathrate hydrates - were determined by pressure-temperature trace during hydrate formation and dissociation, and the result revealed that the equilibrium pressures were shifted to lower pressure region compared to pure $CH_4$ hydrate. The powder X-ray diffraction patterns revealed that the double hydrates of THF + 3-OH THF formed structure II type clathrate hydrates with $CH_4$. The dispersive Raman spectra of the double clathrate hydrates also exhibited that $CH_4$ can be trapped in both $5^{12}6^4$ and $5^{12}$ cages whereas THF and 3-OH THF were encaged in $5^{12}6^4$ cage.

Synthesis of Nanostructured Ceria Powders for an Oxygen-sensor by Thermochemical Process (열화학적 방법에 의한 산소센서용 세리아 나노분말 합성)

  • Lee Dong-Won;Choi Joon-Hwan;Lim Tae-Soo;Kim Yong-Jin
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.192-198
    • /
    • 2006
  • The nanostructured cerium oxide powders were synthesized by spray thermal decomposition process for the use as the raw materials of resistive oxygen sensor. The synthesis routes consisted of 1) spray drying of water based organic solution made from cerium nitrate hydrate ($Ce(NO_3){_3}6H_2O$) and 2) heat treatment of spray dried precursor powders at $400^{\circ}C$ in air atmosphere to remove the volatile components and identically to oxidize the cerium component. The produced powders have shown the loose structure agglomerated with extremely fine cerium oxide particles with about 15 nm and very high specific surface area ($110m^2/g$). The oxygen sensitivity, n ($Log{\propto}Log (P_{O2}/P^o)^{-n}$ and the response time, $t_{90}$ measured at $600^{\circ}C$ in the sample sintered at $1000^{\circ}C$, were about 0.25 and 3 seconds, respectively, which had much higher performances than those known in micron or $100{\sim}200nm$ sized sensors.

Structural and Spectroscopic Investigation of Ceria Nanofibers Fabricated by Electrospinning Process

  • Hwang, Ah-Reum;Park, Ju-Yun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3338-3342
    • /
    • 2011
  • We fabricated ceria ($CeO_2$) nanofibers by applying a mixed solution of polyvinylpyrrolidone (PVP) and various concentrations of cerium nitrate hydrate ($Ce(NO_3)_3$) ranging from 15.0 to 26.0 wt % by the electrospinning process. Ceria nanofibers were obtained after calcining PVP/$Ce(NO_3)_3$ nanofiber composites at 873 and 1173 K. The SEM images indicated that the diameters of $CeO_2$ nanofibers calcined at 873 and 1173 K were smaller than those of nanofibers obtained at RT. As the amount of cerium increased, the diameter of $CeO_2$ nanofibers increased. XRD analysis revealed that the ceria nanofibers were in cubic form. TEM results revealed that the ceria nanofibers were formed by the interconnection of Ce oxide nanoparticles. The ceria nanofibers obtained at low concentrations of Ce (CeL) showed spotty ring patterns indicated that the ceria nanofibers were polycrystalline structure. And the ceria nanofibers obtained at high concentration of Ce (CeH) showed fcc (001) diffraction pattern. XPS study indicated that the oxidation of Ce shifted from $Ce^{3+}$ to $Ce^{4+}$ as the calcination temperature increased.

Synthesis and Photoluminescence Characteristics of Zinc Gallate (ZnGa2O4) Thin Film Phosphors (Zinc Gallate (ZnGa2O4)박막 형광체의 합성과 발광특성)

  • Kim, Su-Youn;Yun, Young-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.32-36
    • /
    • 2007
  • Zinc gallate $(ZnGa_2O_4)$ thin film phosphors have been formed on ITO glass substrates by a sol-gel spinning coating method. For the formation of the film phosphors, the starting materials of zinc acetate dihydrate, gallium nitrate hydrate and 2-methoxyethanol as a solution were used. The thin films deposited were firstly dried at $100^{\circ}C$ and fired at $500^{\circ}C\;or\;600^{\circ}C$ for 30 min and then, annealed $500^{\circ}C\;or\;600^{\circ}C$ at for 30 min under an annealing atmosphere of 3% $H_2/Ar$. The thin films deposited on ITO glass plates showed the (220), (222), (400), (422), (511), and (440) peaks of spinel structure as well as the (311) peak indicating a standard powder diffraction pattern. The surface morphologies of the thin film phosphors were observed with a firing and an annealing condition. The $ZnGa_2O_4$ film phosphors showed the blue emission spectra around 410 nm as well as the emission spectra in the UV region (360-380 nm).

Structure Identification and Cage Occupancy Analysis of the Mixed Gas Hydrates Containing 1-Propanol and 2-Propanol (propanol계 혼합 하이드레이트의 구조 및 동공 점유 분석)

  • Lee, Youngjun;Lee, Seungmin;Park, Sungmin;Kim, Yunju;Seo, Yongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.121.1-121.1
    • /
    • 2011
  • 일반적으로 알콜계 물질은 가스 하이드레이트 형성에 저해제로 사용된다고 알려져 있으나, 최근의 연구를 통해 2-propanol이 일부 조건에서 촉진효과가 나타난다고 보고되고 있다. 본 연구에서는 알콜계 물질인 1-propanol과 2-propanol의 가스 하이드레이트 격자내로의 포집여부와 그로 인한 촉진 혹은 저해 작용 그리고 구조적 특성에 대해 알아보았다. $CO_2$$CH_4$ 기체에 대하여 1-propanol 혹은 2-propanol을 첨가하여 형성된 혼합 하이드레이트의 3상평형 기상(V)-물(Lw)-하이드레이트(H))을 측정하였다. 그 결과 $CO_2$의 경우 1-propanol과 2-propanol이 저해 작용을 함을 확인하였으며 농도가 높을수록 저해작용이 커짐을 알 수 있었다. 반면, $CH_4$의 경우 1-propanol에서는 저해 및 촉진효과가 거의 나타나지 않았지만, 2-propanol에서는 촉진효과가 나타났으며 5.6 mol%에서 촉진효과가 가장 크게 나타났다. 혼합 하이드레이트의 구조규명 및 동공 점유 분석을 위해 $^{13}C$ NMR과 XRD분석을 하였으며, 그 결과 2-propanol과 1-propanol을 포함하는 혼합 하이드레이트는 구조 II를 형성하며, 2-propanol과 1-propanol은 큰 동공에 포집되고, 기체는 작은 동공에 포집됨을 확인할 수 있었다. 본 연구의 결과는 알콜계 물질을 첨가제로 사용하는 가스 하이드레이트 공정에서 매우 유용한 기초자료가 될 것으로 사료된다.

  • PDF

Reactions of Pyrimidinonethione Derivatives;Synthesis of 2-Hydrazinopyrimidin-4-one, Pyrimido[1,2-a]-1,2,4-triazine, Triazolo-[1,2-a]pyrimidine, 2-(1-pyrazolo)Pyrimidine and 2-Arylhydrazonopyrimidine Derivatives

  • Attaby, Fawzy-A.;Eldin, Sanaa-M.;Hanafi, Eman-A.Z.
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.620-628
    • /
    • 1997
  • 6-Aryl-5-cyano-4-pyrimidinon-2-thione derivatives 1a-c reacted with ethyl iodide to give the corresponded 2-S-ethylpyrimidin-4-one-derivatives 2a-c. Compounds 2a-c was, in turn, reacted with hydrazine hydrate to give the sulfur free reaction products, 3a-c. These reaction products were taken as the starting materials for the synthesis of several newly synthesized heterocyclic derivatives. Reactions with several halogenated ketones, esters, chloroacetic acid and chloroacetamide give pyrimidotriazines 8,12 and 15 while their reactions with formic acid, acetic acid and carbon disulfide gave the corresponded triazolopyrimidines 17 and 21. The reaction with both acetyl acetone and ethylacetoacetate gave the corresponded 2-$(3^{I},5^{I}-dimethyl-1^{I}-pyrazoly$pyrimidine derivatives 20a-c and 24a-c respectively while the reaction with cinnamonitriles 25a-h afforded the corresponded aryl hydrazopyrimidines 27a-f. The structure of these reaction products were eatablished based on both elemental anlayses and spectral data studies.

  • PDF

Influences of Potassium Fluoride (KF) Addition on the Surface Characteristics in Plasma Electrolytic Oxidation of Marine Grade Al Alloy (해양환경용 알루미늄 합금의 플라즈마 전해 산화 시 표면 특성에 관한 불화칼륨(KF)의 영향)

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.280-285
    • /
    • 2016
  • In this study, we investigated the influences of potassium fluoride(KF) addition on the surface characteristics of plasma electrolytic oxidation(PEO) coating produced on Al alloy. The PEO of marine grade Al alloy(5083 grade) was conducted in KOH 1g/L solution adding different concentrations of KF(0, 1 and 2 g/L) under a galvanostatic regime. With KF addition, unusual behavior was observed on the voltage-time characteristic curves, which can be characterized by the following process: (i) initial rapid increase in voltage (ii) a short plateau after 1st breakdown (iii) gradual increase in voltage (iv) intermittent fluctuation of voltage after 2nd breakdown. The SEM observation revealed irregular surface morphology with KF addition, as compared with one formed without KF addition, which had a reticulate structure. The XRD analysis detected the formation of aluminium hydroxide fluoride hydrate($H_{4.76}Al_2F_{3.24}O_{3.76}$) on surface grown by PEO process with KF. Particularly, at very early stage of the process (~ 120 s), thin film was formed having nanoporous structure, and F element was confirmed on surface by EDS analysis. The thickness and surface roughness of the coating increased with increasing KF concentration. As a result, KF addition was found to be less beneficial influences on PEO of marine grade Al alloy, and therefore needs further research to improve its capability.

Influence of Alumina on Hydrothermal Synthesis of 11Å Tobermorite (알루미나가 11Å Tobermorite의 수열합성에 미치는 영향)

  • Yim Going;Yim Chai Suk
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.97-105
    • /
    • 2005
  • [ $11\AA$ ] tobermorite$(5CaO{\cdot}6SiO_2{\cdot}5H_2O)$ is synthesized from the mixtures of calcium hydroride and quartz using alumina in a molar ratio $Ca(OH)_2/SiO_2$ of 0.8 at $180^{\circ}C$ for 8 and 24 hrs under saturated steam pressure. The influence of alumina on the formation of $11\AA$ tobermorite was investigated by X-ray diffraction, differential thermal analysis and infrared spectroscopy. $11\AA$ tobermorite containing increasingly larger amounts of aluminum showed a shift of the basal spacing from 11.3 to $11.6\AA$. In general, there was a direct linear relation between the basal spacing and added content of alumina. The differential thermal analysis curves showed that $11\AA$ tobermorite with increasing alumina contents exhibited the exothermic peak at high temperature, namely $11\AA$ tobermorite containing aluminum gave a sharp exothermic peak at temperature around $850\~860^{\circ}C$ in the case of $S_3\~S_5$. The absorption band at $1607\~1620cm^{-1}$ is attributed to the bending vibration of water, and the position of the main O-H stretching and Si-O lattice vibration of $11\AA$ tobermorite at 3500 and $965cm^{-1}$ respectively is not altered. Consequently the existence of alumina accelerates the crystallization of $11\AA$ tobermorite, and that the aluminum ion appears to substitute for the silicon ion in $11\AA$ tobermorite structure. Al-containing tobermorite is distinguished from Al-free tobermorite.