DOI QR코드

DOI QR Code

Development of Bottom Ash Replacement Cement Using Diethanol Isopropanolamine

Diethanol Isopropanolamine을 활용한 바텀애시 치환 시멘트 개발

  • Hyunuk Kang (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Ahyeon Lim (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Juhyuk Moon (Department of Civil and Environmental Engineering, Seoul National University)
  • 강현욱 (서울대학교 건설환경공학부) ;
  • 임아현 (서울대학교 건설환경공학부) ;
  • 문주혁 (서울대학교 건설환경공학부)
  • Received : 2024.01.24
  • Accepted : 2024.02.13
  • Published : 2024.03.30

Abstract

In this study, DEIPA was used for enhancing cementitious performance of bottom ash replaced cement. By applying the partial or no-known crystal structure method to X-ray diffraction data, the amounts of amorphous bottom ash and calcium silicate hydrate(C-S-H) could be separated and quantified. In the sample without DEIPA, the bottom ash hardly reacted, resulting in low compressive strength. However, the addition of DEIPA not only altered the hydration behavior of the cement but also enhanced the pozzolanic reaction between bottom ash and calcium hydroxide, leading to the generation of additional C-S-H. This resulted in high compressive strength not only in the early stages but also in the later stages. Therefore, with the addition of DEIPA during the pulverization of the bottom ash, the reactivity of the bottom ash was significantly improved. Hence, there is potential in the development of bottom ash replacement cement.

이 연구에서는 DEIPA를 사용하여 바텀애시를 미분말화하고, 이를 활용하여 바텀애시 치환 시멘트를 개발했다. partial or no-known crystal structure 방법을 X-선 회절 정량 분석에 적용하여 비결정질인 바텀애시와 C-S-H의 양을 분리하여 정량화 할 수 있었다. DEIPA를 첨가하지 않은 배합에서는 바텀애시가 거의 반응하지 않았으며, 이에 따라 압축강도도 낮게 발현되었다. 그러나 DEIPA를 첨가한 배합에서는 시멘트의 수화 거동을 변화시켰을 뿐만 아니라 바텀애시와 수산화칼슘 사이의 포졸란 반응도 향상시켜서 추가적인 C-S-H를 생성하였고, 재령 초기 뿐만 아니라 후기에도 높은 압축강도를 얻을 수 있었다. 따라서 바텀애시를 분쇄할 때 극소량의 DEIPA를 첨가하더라도 바텀애시의 반응성을 충분히 증진시킬 수 있었기에 바텀애시 치환시멘트 개발에 도움이 될 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 한국중부발전 현장기술개발 사업(과제명: 바텀애시 분쇄촉매화를 통한 기존 플라이애시 동등 성능 이상의 SCM 개발 실증)의 연구비 지원으로 수행되었으며, 이에 감사드립니다.

References

  1. Andrade, L., Rocha, J. C., Cheriaf, M. (2007). Evaluation of concrete incorporating bottom ash as a natural aggregates replacement, Waste Management, 27(9), 1190-1199.
  2. Antoni, M., Rossen, J., Martirena, F., Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone, Cement and Concrete Research, 42(12), 1579-1589.
  3. Aydin, E. (2016). Novel coal bottom ash waste composites for sustainable construction, Construction and Building Materials, 124, 582-588.
  4. Bajare, D., Bumanis, G., Upeniece, L. (2013). Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete, Procedia Engineering, 57, 149-158.
  5. Carsana, M., Gastaldi, M., Lollini, F., Redaelli, E., Bertolini, L. (2016). Improving durability of reinforced concrete structures by recycling wet-ground MSWI bottom ash, Materials and Corrosion, 67(6), 573-582.
  6. Cho, Y.K., Jung, S.H., Choi, Y.C. (2019). Effects of chemical composition of fly ash on compressive stregnth of fly ash cement mortar, Construction and Building Materials, 204, 255-264.
  7. Cuesta, A., Santacruz, I., Angeles, G., Dapiaggi, M., Zea-Garcia, J.D., Aranda, M.A. (2021). Local structure and Ca/Si ratio in CSH gels from hydration of blends of tricalcium silicate and silica fume, Cement and Concrete Research, 143, 106405.
  8. Deboucha, W., Leklou, N., Khelidj, A., Oudjit, M.N. (2017). Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): methodology of calculating the degree of hydration, Construction and Building Materials, 146, 687-701.
  9. Famy, C., Brough, A.R., Taylor, H.F.W. (2003). The CSH gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on CSH, AFm and AFt phase compositions, Cement and Concrete Research, 33(9), 1389-1398.
  10. Ferg, E.E., Simpson, B. (2013). Using PXRD and PONKCS to determine the kinetics of crystallisation of highly concentrated NH4NO3 emulsions, Journal of Chemical Crystallography, 43(4), 197-206.
  11. Hong, S.Y., Glasser, F.P. (2002). Alkali sorption by CSH and CASH gels: Part II. Role of alumina, Cement and Concrete Research, 32(7), 1101-1111.
  12. Janicka, J., Debiagi, P., Scholtissek, A., Dreizler, A., Epple, B., Pawellek, R., Maltsev, A., Hasse, C. (2023). The potential of retrofitting existing coal power plants: a case study for operation with green iron, Applied Energy, 339, 120950.
  13. Kang, H., Lee, N., Moon, J. (2020). Elucidation of the hydration reaction of UHPC using the PONKCS method, Materials, 13(20), 4661.
  14. Kang, H., Moon, J. (2021). Secondary curing effect on the hydration of ultra-high performance concrete, Construction and Building Materials, 298, 123874.
  15. Kang, H., Kim, S., Lee, Y., Jung, S., Moon, J. (2024a). Mechanochemical effect of alkanolamines on the C4AF: crystal structure, hydration behavior, and strength enhancement, Cement and Concrete Composites, 145, 105326.
  16. Kang, H., Yang, J., Kim, S., Lim, A., Moon, J. (2024b). Mechanochemical activation for transforming bottom ash to reactive supplementary cementitious material, Construction and Building Materials, 411, 134523.
  17. Kurama, H., Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture, Construction and Building Materials, 22(9), 1922-1928.
  18. Li, W., Ma, S., Hu, Y., Shen, X. (2015). The mechanochemical process and properties of Portland cement with the addition of new alkanolamines, Powder Technology, 286, 750-756.
  19. Lynn, C.J., Ghataora, G.S., Obe, R.K.D. (2017). Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements, International Journal of Pavement Research and Technology, 10(2), 185-201.
  20. Ma, S., Li, W., Zhang, S., Hu, Y., Shen, X. (2015). Study on the hydration and microstructure of Portland cement containing diethanol-isopropanolamine, Cement and Concrete Research, 67, 122-130.
  21. Moon, J., Oh, JE., Balonis, M., Glasser, FP., Clark, SM. (2012). High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO.Al2O3.CaCO3.11H2O, Cement and Concrete Research, 42(1), 105-110.
  22. Papatzani, S., Paine, K., Calabria-Holley, J. (2015). A comprehensive review of the models on the nanostructure of calcium silicate hydrates, Construction and Building Materials, 74, 219-234.
  23. Rietveld, H.M. (1969). A profile refinement method for nuclear and magnetic structures, Journal of applied Crystallography, 2(2), 65-71.
  24. Scrivener, K., Snellings, R., Lothenbach, B. (2018). A Practical Guide to Microstructural Analysis of Cementitious Materials, Crc Press.
  25. Singh, N., Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement, Construction and Building Materials, 233, 117276.
  26. Snellings, R., Chwast, J., Cizer, O., De Belie, N., Dhandapani, Y., Durdzinski, P., Elsen, J., Haufe, J., Hooton, D., Patapy, C. (2018). Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements-results of a round robin test, Materials and Structures, 51(4), 111.
  27. Wang, Y., Lei, L., Hu, X., Liu, Y., Shi, C. (2022). Effect of diethanolisopropanolamine and ethyldiisopropylamine on hydration and strength development of Portland cement, Cement and Concrete Research, 162, 106999.
  28. Xiang, J., Qiu, J., Li, Z., Chen, J., Song, Y. (2022). Eco-friendly treatment for MSWI bottom ash applied to supplementary cementing: mechanical properties and heavy metal leaching concentration evaluation, Construction and Building Materials, 327, 127012.
  29. Xu, Z., Li, W., Sun, J., Hu, Y., Xu, K., Ma, S., Shen, X. (2017). Research on cement hydration and hardening with different alkanolamines, Construction and Building Materials, 141, 296-306.
  30. Zhang, J., Scherer, G.W. (2011). Comparison of methods for arresting hydration of cement, Cement and Concrete Research, 41(10), 1024-1036.