• 제목/요약/키워드: Structure Equation Model

검색결과 979건 처리시간 0.029초

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

시뮬레이션과 회귀분석을 연계한 적응형 공정의사결정방법 (Adaptive Process Decision-Making with Simulation and Regression Models)

  • 이병훈;윤성욱;정석재
    • 한국시뮬레이션학회논문지
    • /
    • 제23권4호
    • /
    • pp.203-210
    • /
    • 2014
  • 본 연구는 생산공정운영시 발생하는 담당자의 의사결정 지원을 위한 학습형 공정 의사결정 시스템 구축방법에 대한 것이다. 먼저 추출 및 누적된 각 공정 별 이력 데이터에서, 주요한 주요자원(Critical Resource)을 단계적 회귀법에 따라 선정한다. 선정된 주요자원을 독립변수로 취급하여 담당자의 의사결정 대상이 되는 공정운영 성과를 종속변수로 하는 회귀모형을 산출하고, 해당 주요자원으로 구성된 시뮬레이션 모형을 설계한다. 메타휴리스틱 방법을 통하여 의사결정 시점의 생산계획 및 목적에 대한 시뮬레이션 분석을 실행하고, 복수 대안 및 가능해(기대성과)를 산출한다. 각각의 대안에서 주요자원 별 회귀모형을 구성하는 분석 값을 회귀식에 대입하고, 여기에서 얻어지는 값과 시뮬레이션 분석에 의해 산출된 가능해 간의 비교를 통하여 그 차이가 가장 작은 대안을 최적대안으로 선정하고 실제 공정운영 의사결정에 반영하여 생산을 실시한다. 이때 발생하는 공정 이력 데이터들은 이후 의사결정을 위한 회귀모형에 피드백 된다.

센서 네트워크를 위한 네이밍 응용 모델 (A Naming Application Model for Sensor Networks)

  • 김영준
    • 한국산학기술학회논문지
    • /
    • 제10권11호
    • /
    • pp.3183-3192
    • /
    • 2009
  • 본 논문에서는 센서 네트워크에서의 네이밍 응용 모델을 제안한다. 최근 센서 노드들로 구성된 센서 네트워크는 기존의 네트워크에서는 불가능한 적용 범위를 제공한다. 그러나, 일반적인 네트워크와는 달리 한정된 자원을 가진 대규모의 센서 노드들이 협력해야 하기 때문에 개별 센서와 데이터를 주고 받아 작업을 처리하는 것은 매우 비효율적이며, 불안정하다. 데이터의 불완전한 결함이 발생하는 상황에서 투명하고 지속적으로 서비스를 가능하게 하도록 하기 위해서 제안된 SN LDAP 응용모델을 이용하여 가상 개념을 도입한 센서 네트워크를 위한 속성 및 스키마 그리고 DIT를 설계한다. 이러한 시스템을 바탕으로 SN 퍼지 질의를 처리할 수 있는 네이밍 응용모델을 만든다. 센서노드로부터 수집된 정보를 이용한 특정 환경에서 가상식을 이용한 네이밍 응용모델 기능이 센서 네트워크에서 제공되면, 보다 효율적이며, 안정적인 구조가 될 것이다. 본 논문에서는 속성기반의 네이밍 방법으로 센서 네트워크를 위한 SN퍼지 LDAP 모델을 제안하고, 이를 기반으로 특정 환경에서 퍼지 처리가 가능한 네이밍 응용모델을 만들고자 한다.

시스템다이내믹스를 활용한 국내청소년 사이버불링피해 모델 개발 (Development of a Quantitative Model on Adolescent Cyberbullying Victims in Korea: A System Dynamics Approach)

  • 유미진;함은미
    • 대한간호학회지
    • /
    • 제49권4호
    • /
    • pp.398-410
    • /
    • 2019
  • Purpose: This study used a system dynamics methodology to identify correlation and nonlinear feedback structures among factors affecting adolescent cyberbullying victims (CV) in Korea and to construct and verify a simulation model. Methods: Factors affecting CV were identified by reviewing a theoretical background in existing literature and referencing various statistical data. Related variables were identified through content validity verification by an expert group, after which a causal loop diagram (CLD) was constructed based on the variables. A stock-flow diagram (SFD) using Vensim Professional 7.3 was used to establish a CV model. Results: Based on the literature review and expert verification, 22 variables associated with CV were identified and the CLD was prepared. Next, a model was developed by converting the CLD to an SFD. The simulation results showed that the variables such as negative emotions, stress levels, high levels of conflict in schools, parental monitoring, and time spent using new media had the strongest effects on CV. The model's validity was verified using equation check, sensitivity analysis for timestep and simulation with 4 CV adolescent. Conclusion: The system dynamics model constructed in this study can be used to develop intervention strategies in schools that are focused on counseling that can prevent cyberbullying and assist in the victims' recovery by formulating a feedback structure and capturing the dynamic changes observed in CV. To prevent cyberbullying, it is necessary to develop more effective strategies such as prevention education, counseling and treatment that considers factors pertaining to the individual, family, school, and media.

Measurement of Complex Modulus of Acoustic Materials by Using Transfer Function Method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Joo;Kim, Bong-Ki;Kim, Sang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권1E호
    • /
    • pp.12-17
    • /
    • 2002
  • Two improvements are discussed in measurement of the complex Young's modulus of the acoustic materials by using the transfer function method. It is found that the accelerometer misalignment might result in the severe measurement error, particularly in high frequency range. The supporting structure is modified to attach the upper and lower accelerometers along the vertical axis. Secondly, the method fur solving the equation associated with wave model is described. The solution of the lumped mass-spring model is chosen as the starting value for low frequency range, while in the mid and high frequency, the solution to the previous frequency step is used as the initial values. Measurements are done for hard and soft rubber specimens. It is shown that the erroneous peaks in the transfer function, due to the measurement error, cause highly incorrect Young's modulus and loss factors.

풍속에 따른 포설 아스팔트 혼합물의 온도변화에 대한 열전달 해석 (Heat Transfer Analysis for Asphalt Mixture Temperature Variation due to Wind Speed)

  • 윤태영;유평준
    • 한국도로학회논문집
    • /
    • 제17권4호
    • /
    • pp.33-40
    • /
    • 2015
  • PURPOSES: Evaluation of the wind speed effect on the temperature drop of an asphalt mixture during construction, by using the transient heat transfer theory and dominant convective heat transfer coefficient model. METHODS: Finite difference method (FDM) is used to solve the transient heat transfer difference equation numerically for various wind speeds and initial temperature conditions. The Blasius convective heat transfer coefficient model is adapted to account for the effect of wind speed in the temperature predictions of the asphalt mixture, and the Beaufort number is used to select a reasonable wind speed for the analysis. As a function of time and depth, the temperature of the pavement structure is predicted and analyzed for the given initial conditions. RESULTS : The effect of wind speed on the temperature drop of asphalt mixture is found to be significant. It seems that wind speed is another parameter to be accounted for in the construction specifications for obtaining a better quality of the asphalt mixture. CONCLUSIONS: It is concluded that wind speed has a significant effect on the temperature drop of the asphalt layer. Although additional field observations have to be made to reflect the effect of wind speed on the construction specifications, it appears that wind speed is a dominant variable to be considered, in addition to the atmospheric temperature.

스쿠버다이빙 지도자의 전문성과 지도자신뢰 및 지도효율성의 관계모형 분석 (Study on Relational Model of Scuba Diving Instructors' Expertise, Instructor Reliability and Instruction Efficiency)

  • 소훈;유현조;황영성
    • 수산해양교육연구
    • /
    • 제27권5호
    • /
    • pp.1436-1446
    • /
    • 2015
  • This study aims to understand how scuba diving instructors' expertise, instructor reliability and instruction efficiency are related to each other. In order to achieve the research goal, the study used a multi-stage stratified cluster sampling method and collected valid samples from 400 individuals at age of 20 and older who were scuba diving in scuba diving clubs in Busan, Gyeongnam, Gyeongbuk, Jeonnam and Jeonbuk. The 400 valid samples were applied to the data analysis. The study used SPSS 21.0 for processing the gathered data via a frequency analysis, a reliability analysis and a correlation analysis and in order to verify the hypotheses, the study applied AMOS 21.0 and conducted a confirmatory factor analysis and a structure equation model analysis. Findings that the study had extracted are summarized as follows. First, the study confirmed that the scuba diving instructors' expertise has a positive effect on the instructor reliability. Second, the scuba diving instructors' expertise was reported to positively influence the instruction efficiency. Third, the results revealed that the scuba diving club members' reliability in the instructors has a positive influence on the instruction efficiency.

초등예비교사의 과학 동기유발과 과학적 소양의 역량에 대한 인과구조 (The Causal Structure to the Scientific Motivation and the Scientific Literacy Competency in Pre-service Elementary Teachers)

  • 김동욱
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제36권3호
    • /
    • pp.208-218
    • /
    • 2017
  • This study was to investigate factors and disclose causal model of the scientific literacy competency about the motivation for science and the scientific literacy competency. The 3 grade university students and the 1 grade university students as pre-service elementary teachers were participated to questionnaire investigation. The data were analyzed by the factor analysis method and the structural equation model method, and the following results were obtained. First, the 3 grade university students and the 1 grade university students perceived the science interest factors and science usefulness factors as the motivation for science, and also revealed the scientific problem recognition factor and the scientific evidence use factor as the scientific literacy competency. Second, the science interest factor had a greater effect on the scientific problem recognition factor than the scientific evidence use factor in both the 3 grade and 1 grade university students. In the path from the science usefulness factor to the scientific problem recognition factor, the science usefulness factor of the 3 grade university students had a greater influence on the direct route to the scientific problem recognition factor than that of the 1 grade university students. In the path from the science usefulness factor to the scientific evidence use factor, the science usefulness factor of the 1 grade university students influenced more on the direct route to the scientific evidence use factor than that of the 3 grade university students.

Kinetics of Water Vapor Absorption by Sodium Alginate-based Films

  • Seog, Eun-Ju;Zuo, Li;Lee, Jun-Ho;Rhim, Jong-Whan
    • Preventive Nutrition and Food Science
    • /
    • 제13권1호
    • /
    • pp.28-32
    • /
    • 2008
  • Water vapor sorption by sodium alginate-based films may result in swelling and conformational changes in the molecular structure and affecting the water vapor barrier properties. Sodium alginate film specimens were dried in a vacuum freeze dryer and their moisture content was determined by an air-oven method. The water vapor absorption was determined at two different levels of water activities (0.727 and 0.995) and at three temperatures (10, 20, and $30^{\circ}C$), and kinetics were analyzed using a simple empirical model. Reasonably good straight lines were obtained with plotting of 1/($m-m_0$) vs 1/t. It was found that water vapor absorption kinetics of sodium alginate films were accurately described by a simple empirical model. The rate of water vapor sorption increased with increase in temperature and it showed temperature dependency following the Arrhenius equation. The activation energies varied from 49.18$\sim$149.55 kJ/mol depending on the relative humidity.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.