• Title/Summary/Keyword: Structural transformation

Search Result 561, Processing Time 0.027 seconds

Deformation estimation of truss bridges using two-stage optimization from cameras

  • Jau-Yu Chou;Chia-Ming Chang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Structural integrity can be accessed from dynamic deformations of structures. Moreover, dynamic deformations can be acquired from non-contact sensors such as video cameras. Kanade-Lucas-Tomasi (KLT) algorithm is one of the commonly used methods for motion tracking. However, averaging throughout the extracted features would induce bias in the measurement. In addition, pixel-wise measurements can be converted to physical units through camera intrinsic. Still, the depth information is unreachable without prior knowledge of the space information. The assigned homogeneous coordinates would then mismatch manually selected feature points, resulting in measurement errors during coordinate transformation. In this study, a two-stage optimization method for video-based measurements is proposed. The manually selected feature points are first optimized by minimizing the errors compared with the homogeneous coordinate. Then, the optimized points are utilized for the KLT algorithm to extract displacements through inverse projection. Two additional criteria are employed to eliminate outliers from KLT, resulting in more reliable displacement responses. The second-stage optimization subsequently fine-tunes the geometry of the selected coordinates. The optimization process also considers the number of interpolation points at different depths of an image to reduce the effect of out-of-plane motions. As a result, the proposed method is numerically investigated by using a truss bridge as a physics-based graphic model (PBGM) to extract high-accuracy displacements from recorded videos under various capturing angles and structural conditions.

Theoretical studies on the stabilization and diffusion behaviors of helium impurities in 6H-SiC by DFT calculations

  • Obaid Obaidullah;RuiXuan Zhao;XiangCao Li;ChuBin Wan;TingTing Sui;Xin Ju
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2879-2888
    • /
    • 2023
  • In fusion environments, large scales of helium (He) atoms are produced by a radical transformation along with structural damage in structural materials, resulting in material swelling and degradation of physical properties. To understand its irradiation effects, this paper investigates the stability, electronic structure, energetics, charge density distribution, PDOS and TDOS, and diffusion processes of He impurities in 6HSiC materials. The formation energy indicates that a stable, favorable position for interstitial He is the HR site with the lowest energy of 2.40 eV. In terms of vacancy, the He atom initially prefers to substitute at pre-existing Si vacancy than C vacancy due to lower substitution energy. The minimum energy paths (MEPs) with migration energy barriers are also calculated for He impurity by interstitial and vacancy-mediated diffusion. Based on its calculated energy barriers, the most possible diffusion path includes the exchange of interstitial and vacancy sites with effective migration energies ranging from 0.101 eV to 1.0 eV. Our calculation provides a better understanding of the stabilization and diffusion behaviors of He impurities in 6H-SiC materials.

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

Estimation of Moving Loads by Measuring Dynamic Response (동적 거동계측을 통한 이동하중 추정)

  • Cho, Jae Yong;Shin, Soobong;Choi, Kwang-Kyu;Kwon, Soon-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.129-137
    • /
    • 2007
  • An algorithm is proposed for estimating axle loads of trucks moving over a bridge by measuring dynamic responses. The bridge was modeled by a beam structure in the current applications of the proposed algorithm. Among the state vectors, measured acceleration was used and displacement was computed from measured strain at the same location. Nodal force vectors were computed by using a ready-made database of equivalent nodal force transformation matrix. The algorithm was examined through simulation studies and laboratory experiments. The effects of measurement noise and velocity error were investigated through simulation studies.

Remarkable impact of amino acids on ginsenoside transformation from fresh ginseng to red ginseng

  • Liu, Zhi;Wen, Xin;Wang, Chong-Zhi;Li, Wei;Huang, Wei-Hua;Xia, Juan;Ruan, Chang-Chun;Yuan, Chun-Su
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.424-434
    • /
    • 2020
  • Background: Amino acids are one of the major constituents in Panax ginseng, including neutral amino acid, acidic amino acid, and basic amino acid. However, whether these amino acids play a role in ginsenoside conversion during the steaming process has not yet been elucidated. Methods: In the present study, to elucidate the role of amino acids in ginsenoside transformation from fresh ginseng to red ginseng, an amino acids impregnation pretreatment was applied during the steaming process at 120℃. Acidic glutamic acid and basic arginine were used for the acid impregnation treatment during the root steaming. The ginsenosides contents, pH, browning intensity, and free amino acids contents in untreated and amino acid-treated P. ginseng samples were determined. Results: After 2 h of steaming, the concentration of less polar ginsenosides in glutamic acid-treated P. ginseng was significantly higher than that in untreated P. ginseng during the steaming process. However, the less polar ginsenosides in arginine-treated P. ginseng increased slightly. Meanwhile, free amino acids contents in fresh P. ginseng, glutamic acid-treated P. ginseng, and arginine-treated P. ginseng significantly decreased during steaming from 0 to 2h. The pH also decreased in P. ginseng samples at high temperatures. The pH decrease in red ginseng was closely related to the decrease in basic amino acids levels during the steaming process. Conclusion: Amino acids can remarkably affect the acidity of P. ginseng sample by altering the pH value. They were the main influential factors for the ginsenoside transformation. These results are useful in elucidating why and how steaming induces the structural change of ginsenoside inP. ginseng and also provides an effective and green approach to regulate the ginsenoside conversion using amino acids during the steaming process.

The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics

  • Kim, Hyung-Tae;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.113-117
    • /
    • 2009
  • STATEMENT OF PROBLEM. Recently Yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) has been introduced due to superior flexural strength and fracture toughness compared to other dental ceramic systems. Although zirconia has outstanding mechanical properties, the phenomenon of decrease in the life-time of zirconia resulted from degradation in flexural strength after low temperature aging has been reported. PURPOSE. The objective of this study was to investigate degradation of flexural strength of Y-TZP ceramics after various low temperature aging treatments and to evaluate the phase stability and micro-structural change after aging by using X-ray diffraction analysis and a scanning electron microscope (SEM). MATERIAL AND METHODS. Y-TZP blocks of Vita In-Ceram YZ (Vita Zahnfabrik, Bad $S\ddot{a}ckingen$, Germany) were prepared in 40 mm (length) $\times$ 4 mm (width) $\times$ 3 mm (height) samples. Specimens were artificially aged in distilled water by heat-treatment at a temperature of 75, 100, 125, 150, 175, 200, and $225^{\circ}C$ for 10 hours, in order to induce the phase transformation at the surface. To measure the mechanical property, the specimens were subjected to a four-point bending test using a universal testing machine (Instron model 3365; Instron, Canton, Mass, USA). In addition, X-ray diffraction analysis (DMAX 2500; Rigaku, Tokyo, Japan) and SEM (Hitachi s4700; Jeol Ltd, Tokyo, Japan) were performed to estimate the phase transformation. The statistical analysis was done using SAS 9.1.3 (SAS institute, USA). The flexural strength data of the experimental groups were analyzed by one-way analysis of variance and to detect statistically significant differences ($\alpha$= .05). RESULTS. The mean flexural strength of sintered Vita In-Ceram YZ without autoclaving was 798 MPa. When applied aging temperature at below $125^{\circ}C$ for 10 hours, the flexural strength of Vita In-Ceram YZ increased up to 1,161 MPa. However, at above $150^{\circ}C$, the flexural strength started to decrease. Although low temperature aging caused the tetragonal-to-monoclinic phase transformation related to temperature, the minimum flexural strength was above 700 MPa. CONCLUSION. The monoclinic phase started to appear after aging treatment above $100^{\circ}C$. With the higher aging temperature, the fraction of monoclinic phase increased. The ratio of monoclinic/tetragonal + monoclinic phase reached a plateau value, circa 75% above $175^{\circ}C$. The point of monoclinic concentration at which the flexural strength begins to decrease was between 12% and 54%.

Phase transformation and magnetic properties of $Ni_xFe_{100-x}$ thin films deposited by a co-sputtering (동시 스퍼터링법으로 제조된 $Ni_xFe_{100-x}$ 박막의 상변화와 자기적 특성)

  • Kang, Dae-Sik;Song, Jong-Han;Nam, Joong-Hee;Cho, Jeong-Ho;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.282-287
    • /
    • 2009
  • $Ni_xFe_{100-x}$ films with a thickness of about 100nm were deposited on Si(100) substrates at room temperature by a DC magnetron co-sputtering using Fe and Ni targets. Compositional, structural, electrical and magnetic properties of the films were investigated. $Ni_{67}Fe_{33}$, $Ni_{55}Fe_{45}$, $Ni_{50}Fe_{50}$, $Ni_{45}Fe_{55}$, $Ni_{40}Fe_{60}$ films are obtained by increasing the sputtering power of the Fe target. The films of x < 55 have BCC structure and show the phase transformation after annealing at the range of $300{\sim}450^{\circ}C$ for 2 h. On the other hand, the films of x < 50 have the mixed crystalline phases of BCC and FCC after the annealing treatment. The saturation magnetization was decreased initially by the phase transformation effect but then increased again after annealing at $450^{\circ}C$ due to the grain growth and crystallization of BCC phases.

A Basic Study for Wind Energy of Building Cladding using Computational Fluid Dynamics (CFD를 이용하여 건물 외피의 바람에너지에 관한 적용연구)

  • Chung, Yung-Bea
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$ $$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.

  • PDF

The Changes of System Design Premises and the Structural Reforms of Korean Government S&T Development Management System (시스템 설계전제의 변화와 공공부문 과학기술발전관리시스템 구조의 개혁)

  • 노화준
    • Journal of Technology Innovation
    • /
    • v.5 no.2
    • /
    • pp.1-21
    • /
    • 1997
  • The objective of this paper is to think about what structural reforms of the Korean government S&T development management system might be. Korean society is currently experiencing a drastic socio-economic transformation. The results of this transformation should be reflected on the determining process of the directions and breadths of structural reforms of government S&T development management system. Because the government system design will be based on the premises of socio-economic conditions under which administrative activities perform and also this socio-economic changes can influence on changes of the premises of government management system design. Moreover, S&T development management system is a subsystem of government system so that the directions of structural reform of those subsystems should be considered in the broad framework changes in the development management system of the government. For the last forty years, the Korean government S&T development management system has been based on the premises including transformation from an agrarian society to an industrial society, authoritarianism and centrally controlled institutions, and exteremely small portions of private investments for science and thechonology R & D of the total. Recently, however, the premises of Korean government S&T development management system have rapidly changed. the characteristics of these changes are including tranformation from an industrial society to a knowledge and information intensive society, globalization, localization, and relatively large portion of private investments for science and technology R & C of the total. The basis of government reforms in Korea was the realization of the performances and values through the enhancement of national competitive capacity, attainment of lean government, decentralization and autonomy. However, the Korean government has attached a symbolic value of strategic organizations representing strong policy intentions of government for the science and technology based development. Most problems associated with the Korean government S&T development management system have grown worse during 1990s. Many people perceive that considerable part of this problem was generated because the government could not properly adapt itself to new administrative environment and the paradigm shift in its role. First of all, the Korean government S&T development management system as a whole failed to develop an integrated vision under which processes in formulating science and thechology development goals and developing consistent government plans concerning science and technology development are guided. Second, most of the local governments have little organizational capacity and manpowers to handle localized activities to promote science and technology in their regions. Third, the measure to coordinate and set priorities to invest resources for the development of science and technology was not effective. Fourth, the Most has been losing its reputation as the symbol of ideological commitment of the top policy maker to promote science and technology. Various ideas to reform government S&T development management system have been suggested recently. Most frequently cited ideas are as follow : (ⅰ)strengthen the functions of MoST by supplementing the strong incentive and regulatory measures; (ⅱ)create a new Ministry of Education, Science & Technology and Research by merging the Ministry of Education and the MoST; (ⅲ)create a new Ministry of Science & Technology and Industry ; and(ⅳ)create a National Science and Technology Policy Council under the chairmanship of the President. Four alternatives suggested have been widely discussed among the interested parties and they each have merits as well as weaknesses. The first alternative could be seen as an alternative which cannot resolve current conflicts among various ministries concerning priority setting and resource allocation. However, this alternatives can be seen as a way of showing the top policymaker's strong intention to emphasize science and technology based development. Second alternative is giving a strategic to emphasize on the training and supplying qualified manpower to meet knowledge and information intensive future society. This alternative is considered to be consistent with the new administrative paradigm emphasizing lean government and decentralization. However, opponents are worrying about the linkages and cooperative research between university and industry could be weakening. The third alternative has been adopted mostly in nations which have strong basic science research but weak industrial innovation traditions. Main weakness of this alternative for Korea is that Korean science and technology development system has no strong basic science and technology research traditions. The fourth alternative is consistent with new administrative paradigms and government reform bases. However, opponents to this alternative are worried that the intensive development of science and technology because of Korea's low potential research capabilities in science and technology development. Considerning the present Korean socio-economic situation which demands highly qualified human resources and development strategies which emphasizes the accumulations of knowledge-based stocks, I would like to suggest the route of creating a new Ministry of Education, Science & Technology and Research by intergrating education administration functions and science & technology development function into one ministry.

  • PDF

Mechanical alloying effect and structural observation of (V, Fe)-N amorphous alloy powders (기계적 합금화에 의한 (V, Fe)-N계 비정질 합금의 제조 및 구조변화)

  • 이충효;전성용;김지순
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.129-134
    • /
    • 2004
  • In this study, we investigated the effect of a nitrogen atom on the amorphization of V-Fe alloy through solid-gas reaction during mechanical alloying (MA). MA by planetary ball mill of $V_{70}Fe_{30}$ elemental powders was carried out under the nitrogen gas atmosphere. Amorphization has been observed after 160 hours of ball milling in this case. The DSC spectrum for the mechanically alloyed ($V_{70}Fe$_{30}$)_{0.89}N_{0.11}$ powders exhibits a sharp exothermic peak due to crystallization at about $600^{\circ}C$. Structural transformation from the bcc crystalline to amorphous states was also observed through X-ray and neutron diffractions. We take a full advantage of a negligibly small scattering length of the V atom in the neutron diffraction measurement. During amorphization process the octahedral unit, which is typical of a polyhedron formed in any crystal structures, was preferentially destroyed and transformed into the tetrahedral unit. Futhermore, neutron diffraction measurements revealed that a nitrogen atom is selectively situated at a center of the polyhedron formed by V atoms.