DOI QR코드

DOI QR Code

Theoretical studies on the stabilization and diffusion behaviors of helium impurities in 6H-SiC by DFT calculations

  • Obaid Obaidullah (Physics Department, University of Science and Technology Beijing) ;
  • RuiXuan Zhao (Physics Department, University of Science and Technology Beijing) ;
  • XiangCao Li (College of Science, Xi'an Aeronautical Institute) ;
  • ChuBin Wan (Physics Department, University of Science and Technology Beijing) ;
  • TingTing Sui (Physics Department, University of Science and Technology Beijing) ;
  • Xin Ju (Physics Department, University of Science and Technology Beijing)
  • Received : 2023.02.26
  • Accepted : 2023.05.11
  • Published : 2023.08.25

Abstract

In fusion environments, large scales of helium (He) atoms are produced by a radical transformation along with structural damage in structural materials, resulting in material swelling and degradation of physical properties. To understand its irradiation effects, this paper investigates the stability, electronic structure, energetics, charge density distribution, PDOS and TDOS, and diffusion processes of He impurities in 6HSiC materials. The formation energy indicates that a stable, favorable position for interstitial He is the HR site with the lowest energy of 2.40 eV. In terms of vacancy, the He atom initially prefers to substitute at pre-existing Si vacancy than C vacancy due to lower substitution energy. The minimum energy paths (MEPs) with migration energy barriers are also calculated for He impurity by interstitial and vacancy-mediated diffusion. Based on its calculated energy barriers, the most possible diffusion path includes the exchange of interstitial and vacancy sites with effective migration energies ranging from 0.101 eV to 1.0 eV. Our calculation provides a better understanding of the stabilization and diffusion behaviors of He impurities in 6H-SiC materials.

Keywords

Acknowledgement

The work was also financially supported by the National Key Research and Development Program of China (Grant No. 2022YFB3707501) and National Natural Science Foundation of China (Grant No. 11975043). ChuBin Wan acknowledges the funding project (No. 202106465001) by China Scholarship Council (CSC).

References

  1. W. Bolse, Amorphization and recrystallization of covalent tetrahedral networks, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 148 (1-4) (1999) 83-92. https://doi.org/10.1016/S0168-583X(98)00855-6
  2. F. Linez, F. Garrido, H. Erramli, T. Sauvage, B. Courtois, P. Desgardin, M.F. Barthe, Experimental location of helium atoms in 6H-SiC crystal lattice after implantation and after annealing at 400 ℃, J. Nucl. Mater. 459 (2015) 62-69. https://doi.org/10.1016/j.jnucmat.2014.12.118
  3. B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, R. Jones, L. Snead, Issues and advances in SiCf/SiC composites development for fusion reactors, J. Nucl. Mater. 329 (2004) 56-65. https://doi.org/10.1016/j.jnucmat.2004.04.002
  4. A. Hasegawa, M. Saito, S. Nogami, K. Abe, R. Jones, H. Takahashi, Helium-bubble formation behavior of SiCf/SiC composites after helium implantation, J. Nucl. Mater. 264 (3) (1999) 355-358. https://doi.org/10.1016/S0022-3115(98)00619-9
  5. G. Hollenberg, C. Henager Jr., G. Youngblood, D. Trimble, S. Simonson, G. Newsome, E. Lewis, The effect of irradiation on the stability and properties of monolithic silicon carbide and SiCf/SiC composites up to 25 dpa, J. Nucl. Mater. 219 (1995) 70-86. https://doi.org/10.1016/0022-3115(94)00391-2
  6. Y. Katoh, L.L. Snead, C.H. Henager Jr., A. Hasegawa, A. Kohyama, B. Riccardi, H. Hegeman, Current status and critical issues for development of SiC composites for fusion applications, J. Nucl. Mater. 367 (2007) 659-671. https://doi.org/10.1016/j.jnucmat.2007.03.032
  7. Y. Katoh, L.L. Snead, Silicon carbide and its composites for nuclear applications - historical overview, J. Nucl. Mater. 526 (2019), 151849.
  8. K. Isobe, T. Yamanishi, S. Konishi, Tritium permeation behavior in SiC/SiC composites, Fusion Eng. Des. 85 (7-9) (2010) 1012-1015. https://doi.org/10.1016/j.fusengdes.2009.12.006
  9. Y. Katoh, L.L. Snead, T. Nozawa, S. Kondo, J.T. Busby, Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures, J. Nucl. Mater. 403 (1-3) (2010) 48-61. https://doi.org/10.1016/j.jnucmat.2010.06.002
  10. H.L. Heinisch, L.R. Greenwood, W.J. Weber, R.E. Williford, Displacement damage in silicon carbide irradiated in fission reactors, J. Nucl. Mater. 327 (2-3) (2004) 175-181. https://doi.org/10.1016/j.jnucmat.2004.02.012
  11. Y. Hirohata a, T. Jinushi a, Y. Yamauchi a, M. Hashiba a, T. Hino a, A.K.b.Y. Katoh b, Gas permeability of SiC/SiC composites as fusion reactor material, Fusion Eng. Des. 61 (2002) 699-704.
  12. C. Langpoklakpam, A.-C. Liu, K.-H. Chu, L.-H. Hsu, W.-C. Lee, S.-C. Chen, C.-W. Sun, M.-H. Shih, K.-Y. Lee, H.-C. Kuo, Review of silicon carbide processing for power MOSFET, Crystals 12 (2) (2022) 245.
  13. A. Declemy, E. Oliviero, M. Beaufort, J. Barbot, M. David, C. Blanchard, Y. Tessier, E. Ntsoenzok, An IR-reflectivity and X-ray diffraction study of high energy He-ion implantation-induced damage in 4H-SiC, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 186 (1-4) (2002) 318-323. https://doi.org/10.1016/S0168-583X(01)00921-1
  14. V. Sciani, P. Jung, Diffusion of helium in fcc metals, Radiat. Eff. 78 (1-4) (1983) 87-99. https://doi.org/10.1080/00337578308207362
  15. K. Minato, K. Sawa, T. Koya, T. Tomita, A. Ishikawa, C.A. Baldwin, W.A. Gabbard, C.M. Malone, Fission product release behavior of individual coated fuel particles for high-temperature gas-cooled reactors, Nucl. Technol. 131 (1) (2017) 36-47. https://doi.org/10.13182/NT00-A3103
  16. F. Garner, C. Hunter, G. Johnson, E. Lippincott, J. Schiffgens, H. Farrar IV, The origin and consequences of radial helium profiles in fast reactor cladding, Nucl. Technol. 58 (2) (1982) 203-217. https://doi.org/10.13182/NT82-A32932
  17. R. Price, Effects of fast-neutron irradiation on pyrolytic silicon carbide, J. Nucl. Mater. 33 (1) (1969) 17-22. https://doi.org/10.1016/0022-3115(69)90003-8
  18. D. Duffy, Fusion power: a challenge for materials science, Phil. Trans. Math. Phys. Eng. Sci. 368 (1923) (2010) 3315-3328.
  19. E.E. Bloom, The challenge of developing structural materials for fusion power systems, J. Nucl. Mater. 258 (1998) 7-17. https://doi.org/10.1016/S0022-3115(98)00352-3
  20. P. Jung, H. Klein, J. Chen, A comparison of defects in helium implanted α-and β-SiC, J. Nucl. Mater. 283 (2000) 806-810. https://doi.org/10.1016/S0022-3115(00)00211-7
  21. R.M. Van Ginhoven, A. Chartier, C. Meis, W.J. Weber, L.R. Corrales, Theoretical study of helium insertion and diffusion in 3C-SiC, J. Nucl. Mater. 348 (1-2) (2006) 51-59. https://doi.org/10.1016/j.jnucmat.2005.09.006
  22. J. Chen, P. Jung, H. Trinkaus, Microstructural evolution of helium-implanted α-SiC, Phys. Rev. B 61 (19) (2000), 12923.
  23. E. Oliviero, M. David, M. Beaufort, J. Nomgaudyte, L. Pranevicius, A. Declemy, J. Barbot, Formation of bubbles by high dose He implantation in 4H-SiC, J. Appl. Phys. 91 (3) (2002) 1179-1186. https://doi.org/10.1063/1.1429760
  24. P. Jung, Diffusion and retention of helium in graphite and silicon carbide, J. Nucl. Mater. 191 (1992) 377-381. https://doi.org/10.1016/0022-3115(92)90790-R
  25. E. Oliviero, A. Van Veen, A. Fedorov, M. Beaufort, J. Barbot, Helium implantation defects in SiC studied by thermal helium desorption spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 186 (1-4) (2002) 223-228. https://doi.org/10.1016/S0168-583X(01)00873-4
  26. E. Oliviero, M. Beaufort, J. Barbot, A. Van Veen, A. Fedorov, Helium implantation defects in SiC: a thermal helium desorption spectrometry investigation, J. Appl. Phys. 93 (1) (2003) 231-238. https://doi.org/10.1063/1.1527974
  27. R. Li, W. Li, C. Zhang, P. Zhang, H. Fan, D. Liu, L. Vitos, J. Zhao, He-vacancy interaction and multiple He trapping in small void of silicon carbide, J. Nucl. Mater. 457 (2015) 36-41. https://doi.org/10.1016/j.jnucmat.2014.10.062
  28. R.A. Kendall, E. Apra, D.E. Bernholdt, E.J. Bylaska, M. Dupuis, G.I. Fann, R.J. Harrison, J. Ju, J.A. Nichols, J. Nieplocha, High performance computational chemistry: an overview of NWChem a distributed parallel application, Comput. Phys. Commun. 128 (1-2) (2000) 260-283. https://doi.org/10.1016/S0010-4655(00)00065-5
  29. G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996), 11169.
  30. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865.
  31. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12) (1976) 5188.
  32. A. Bauer, J. Krausslich, L. Dressler, P. Kuschnerus, J. Wolf, K. Goetz, P. Kackell, J. Furthmuller, F. Bechstedt, High-precision determination of atomic positions in crystals: the case of 6 H-and 4 H-SiC, Phys. Rev. B 57 (5) (1998) 2647.
  33. B.P.U.G. Henkelman, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 499.
  34. M.A. Roberson, S.K. Estreicher, Interstitial hydrogen in cubic and hexagonal SiC, Phys. Rev. B 44 (19) (1991), 10578.
  35. P. Zhang, J. Zhao, B. Wen, Vacancy trapping mechanism for multiple hydrogen and helium in beryllium: a first-principles study, J. Phys. Condens. Matter : an Institute of Physics journal 24 (9) (2012), 095004.
  36. P. Zhang, J. Zhao, B. Wen, Retention and diffusion of H, He, O, C impurities in Be, J. Nucl. Mater. 423 (1-3) (2012) 164-169. https://doi.org/10.1016/j.jnucmat.2012.01.027
  37. R. Li, P. Zhang, X. Li, C. Zhang, J. Zhao, First-principles study of the behavior of O, N and C impurities in vanadium solids, J. Nucl. Mater. 435 (1-3) (2013) 71-76. https://doi.org/10.1016/j.jnucmat.2012.12.022
  38. P. Zhang, R. Li, J. Zhao, B. Wen, Synergetic effect of H and He with vacancy in vanadium solid from first-principles simulations, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 303 (2013) 75-80. https://doi.org/10.1016/j.nimb.2012.10.043
  39. P. Zhang, C. Zhang, R. Li, J. Zhao, He-induced vacancy formation in bcc Fe solid from first-principles simulation, J. Nucl. Mater. 444 (1-3) (2014) 147-152. https://doi.org/10.1016/j.jnucmat.2013.09.048
  40. X. Yang, Y. Lu, P. Zhang, First-principles study of native point defects and diffusion behaviors of helium in zirconium carbide, J. Nucl. Mater. 465 (2015) 161-166. https://doi.org/10.1016/j.jnucmat.2015.06.008
  41. A. Charaf Eddin, L. Pizzagalli, First principles calculation of noble gas atoms properties in 3C-SiC, J. Nucl. Mater. 429 (1-3) (2012) 329-334. https://doi.org/10.1016/j.jnucmat.2012.06.022
  42. S. Zhao, G. Ran, F. Li, H. Deng, F. Gao, Ab initio study of interstitial helium clusters in 3C-SiC, J. Nucl. Mater. 521 (2019) 13-20. https://doi.org/10.1016/j.jnucmat.2019.04.027
  43. J. Barbot, M. Beaufort, M. Texier, C. Tromas, Swelling and stacking fault formation in helium implanted SiC, J. Nucl. Mater. 413 (3) (2011) 162-165. https://doi.org/10.1016/j.jnucmat.2011.04.022
  44. G.J. McIntyre, L. Melesi, M. Guthrie, C.A. Tulk, J. Xu, J.B. Parise, One picture saysit all-high-pressure cells for neutron Laue diffraction on VIVALDI, J. Phys. Condens. Matter 17 (40) (2005) S3017-S3024. https://doi.org/10.1088/0953-8984/17/40/004
  45. X.-Y. Yang, Y. Lu, S. Hussain, T. Duan, P. Zhang, First-principles investigation on stability and diffusion mechanism of helium impurities in 4H-SiC, J. Nucl. Mater. 499 (2018) 168-174. https://doi.org/10.1016/j.jnucmat.2017.11.021
  46. J. Sun, B. Li, Y.-W. You, J. Hou, Y. Xu, C. Liu, Q. Fang, Z. Wang, The stability of vacancy clusters and their effect on helium behaviors in 3C-SiC, J. Nucl. Mater. 503 (2018) 271-278. https://doi.org/10.1016/j.jnucmat.2018.03.010
  47. D. Sun, R. Li, J. Ding, P. Zhang, Y. Wang, J. Zhao, Interaction between helium and intrinsic point defects in 3C-SiC single crystal, J. Appl. Phys. 121 (22) (2017), 225111.