• Title/Summary/Keyword: Structural strain method

Search Result 884, Processing Time 0.025 seconds

A Four-Node Assumed Strain Plate Element for Explicit Dynamic Transient Analysis (명시적인 동적 시간이력해석을 한 사절점 가변형도 평판요소)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.349-359
    • /
    • 2001
  • An enhanced four-node plate element, which has been developed for explicit dynamic analysis of plate, is described in this paper. Reissner-Mind1in(RM) assumptions are adopted to consider transverse shear deformation effects in the present plate element. RM plate element produces a shear locking phenomena in thin plate so that the substitute natural strains based on assumed strain method are explicitly derived. The present plate element is applied into the explicit transient algorithm and the mass matrix of plate is formulated by using special lumping method proposed by Hinton et al. The performance of the element is verified with numerical examples.

  • PDF

Distribution of Optimum Yield-Strength and Plastic Strain Energy Prediction of Hysteretic Dampers in Coupled Shear Wall Buildings

  • Bagheri, Bahador;Oh, Sang-Hoon;Shin, Seung-Hoon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1107-1124
    • /
    • 2018
  • The structural behavior of reinforced concrete coupled shear wall structures is greatly influenced by the behavior of their coupling beams. This paper presents a process of the seismic analysis of reinforced concrete coupled shear wall-frame system linked by hysteretic dampers at each floor. The hysteretic dampers are located at the middle portion of the linked beams which most of the inelastic damage would be concentrated. This study concerned particularly with wall-frame structures that do not twist. The proposed method, which is based on the energy equilibrium method, offers an important design method by the result of increasing energy dissipation capacity and reducing damage to the wall's base. The optimum distribution of yield shear force coefficients is to evenly distribute the damage at dampers over the structural height based on the cumulative plastic deformation ratio of the dissipation device. Nonlinear dynamic analysis indicates that, with a proper set of damping parameters, the wall's dynamic responses can be well controlled. Finally, based on the total plastic strain energy and its trend through the height of the buildings, a prediction equation is suggested.

광섬유 센서를 이용한 원자력 발전소 격납구조물의 가동전 가압 팽창을 통한 구조건전성 시험

  • 김기수
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.56-61
    • /
    • 2003
  • In this Paper, a fiber Bragg grating(FBG) sensor system is described and FBGs are well-suited for long term and extremely severe experiments, where traditional strain gauges fail. In the system. a reflect wave-length measurement method which employs a tunable light source to find out the center wave-length of FBG sensor is used. We apply the FBG system to nuclear energy Power Plant for structural integrity test to measure the displacement of the structure under designed pressure and to check the elasticity of the structure by measuring the residual strain. The system works very well and it is expected that it can be used for a real-time strain, temperature and vibration detector of smart structure.

A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method (정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF

Fimite Element Analysis for Shell Surface using R-adativity (R-adptivity 기법을 이용한 쉘 곡면의 유한요소해석)

  • 전성기;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.311-318
    • /
    • 2001
  • The R-adaptivity method to the shell surface which is presented by the NURBS is proposed. The r-adaptiivty method , given by Liao and Anderson〔2〕, aggregate the grid in the region where is relatively high weight function without any grid-tanggling. In numerical examples, the strain energy error estimate of shell in the whole domain can be reduced effectively by using applied r- adaptivity method mesh.

  • PDF

Spectrum analysis of the FBG sensor signal and location determination of FBG sensor into the $H_2$ pressure vessel (해석적인 기법을 통한 FBG 센서의 스펙트럼 분석 및 수소고압용기의 센서 삽입위치 결정)

  • Park, S.O.;Kim, C.U.;Park, J.S.;Kim, C.G.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.25-28
    • /
    • 2005
  • The optical fiber is known for the proper sensor which can accomplish the structural health monitoring, Fiber Bragg Grating sensors are being studied more than any other fiber optic sensors due to good multiplexing capabilities. But because the signal stability of FBG sensors can be influenced by the strain gradient, it needs to analyze signal of FBG sensors. Particularly acoording to strain gradient induced by structural geometry or cracks, the spectrum peak of the FBG sensor signal can be split easily. In this paper, the spectrum analysis of the FBG sensor signal was performed and the region of embedment of FBG sensors was determined in $H_2$ pressure vessel by numerical method.

  • PDF

Rayleigh-Ritz optimal design of orthotropic plates for buckling

  • Levy, Robert
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.541-552
    • /
    • 1996
  • This paper is concerned with the structural optimization problem of maximizing the compressive buckling load of orthotropic rectangular plates for a given volume of material. The optimality condition is first derived via variational calculus. It states that the thickness distribution is proportional to the strain energy density contrary to popular claims of constant strain energy density at the optimum. An engineers physical meaning of the optimality condition would be to make the average strain energy density with respect to the depth a constant. A double cosine thickness varying plate and a double sine thickness varying plate are then fine tuned in a one parameter optimization using the Rayleigh-Ritz method of analysis. Results for simply supported square plates indicate an increase of 89% in capacity for an orthotropic plate having 100% of its fibers in $0^{\circ}$ direction.

A Study on Geometric Shape of Nanospring using Finite Element Method (유한요소법을 사용한 나노스프링의 기하학적 형상에 관한 연구)

  • Kim, Seong-Seop;Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.562-565
    • /
    • 2010
  • 본 논문에서는 유한요소법을 이용하여 두 개의 층으로 이루어진 Si/SiGe 나노스프링의 기하학적 형상에 대한 연구가 수행된다. 나노스프링의 기하학적 형상에 영향을 미치는 주 설계요소로는 두께, 폭, 길이, 격자방향 등이 있으며, 두 개의 층으로 이루어진 Si/SiGe 박막이 나노스프링의 형상을 가지게 되는 주원인으로는 두 개의 층 경계면에서 발생하는 misfit strain이 있다. 본 연구에서는 두께, 폭, 길이, 격자방향 등의 설계요소를 변화시켜가면서 mistif strain에 의한 나노스프링의 곡률 변화에 대한 해석 결과가 제시된다. 또한 해석 결과의 검증을 위해 해석해의 결과와 분자동력학 전산모사 결과가 함께 제시된다.

  • PDF

A Study on the Analysis of Construction Process for the Stressed-Arch System (Stressed-Arch 시스템의 시공 과정 해석에 관한 연구)

  • 김종범;윤종현;이경수;한상을
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.118-123
    • /
    • 2001
  • The objectives of this research are to verify the structural stability and estimate the resisting performance of Stressed-Arch system during the construction process. Full scale models are taken to obtain the objective shape by the Dynamic Relaxation Method. As a result, it measured more strain than yielding strain at the extreme fiber of top chord member on the crown, but it is shown that members have the sufficiently compressive resisting performance as well as a considerable strain recovery capacity under unloading. Therefore, it is confirmed that Stressed-Arch system apparently have sufficient range of the structural capacity, but it is required that the elasto-plastic behavior of this system must be verified more detailed by numerical analysis and experiments.

  • PDF

Examination of Strain Model Constants considering Strain Properties at High Temperature of Ultra-high-strength Concrete (초고강도 콘크리트의 고온 변형 특성을 고려한 변형모델 상수 검토)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.91-97
    • /
    • 2016
  • Evaluation on the test of actual concrete member to confirm the fire resistance of the concrete member using ultra-high strength concrete is required. However, test equipment which has large loading capacity is needed to the actual member experiment. So, many researchers evaluated the fire performance through analytical studies using the material models. This study experimentally evaluated strain properties on ultra-high-strength concrete of 80, 130 and 180 MPa with heating and examined to apply the existing strain model about ultra-high-strength concrete. As a results, constants are drawn by method of least squares applying experimental values and calculated values by the existing strain model, it proposed strain model that can be applied to ultra-high-strength concrete.