• 제목/요약/키워드: Structural stability

검색결과 2,682건 처리시간 0.04초

고무보판 패널 철도건널목 시스템의 고속열차 풍하중에 대한 구조 안정성 분석 (Evaluation on Structural Stability of Railway Level Crossing System using Rubber Panel by High Speed Train Gust)

  • 최정열;김상진;신태형;정지승
    • 문화기술의 융합
    • /
    • 제5권2호
    • /
    • pp.355-360
    • /
    • 2019
  • 본 연구에서는 고속열차 주행 중 발생하는 풍하중 안정성 검토조건을 준용하여, 열차속도 300km/h와 360km/h에 대한 고속선로용 고무보판 패널 구조의 열차 풍하중에 대한 구조적 안정성을 검토하였다. 이를 위해 고무보판 패널 시스템이 가장 복잡한 구성으로 설치될 수 있는 현장조건을 적용하여 3차원 해석모델링을 이용한 정밀 수치해석을 수행하였으며, 이를 통해 고속열차 풍하중에 대한 고무보판 패널 시스템의 구조적 안정성을 해석적으로 입증하였다.

CNC 복합자동선반 베이스 구조 안전성에 관한 연구 (A Study of Structural Stability of Complex CNC Automatic Lathe Base)

  • 이상협;양동호;차승환;곽진;이종찬;이영식
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.80-85
    • /
    • 2021
  • This study is to evaluate the structural stability of heavy duty structure of the Complex CNC automatic lathe. The analysis conditions were analyzed by applying the weight and load of the part itself and then applying the weight of the upper assembly unit. As a result of the structural analysis, the values of stress and strain are small and safety factor is high, and as a result of the dynamic analysis, there will be no resonance outside the equipment driving area, so there will be no problem in equipment stability.

지적 PID제어를 이용한 구조적 진동의 완화 (Intelligent PID Controller and its application to Structural Vibration Mitigation with MR Damper)

  • 최연욱
    • 전기학회논문지
    • /
    • 제64권8호
    • /
    • pp.1224-1230
    • /
    • 2015
  • This paper is concerned with applicability of intelligent PID controller which is proposed by Fliss and Join recently. First, we analyze the stability regions of intelligent PID control systems when parameter α is varying, and propose a new method to determine the suitable range of α by using the roots locus. Second, the simulation study of magneto-rheological (MR) damper to the structural vibrations due to earthquakes is presented to verify the effectiveness of the intelligent PID control method.

지반굴착용 조립식 버팀보의 구조 안정성에 관한 연구 (A Study on the Structural Stability of Prefabricated Strut for Ground Excavation Construction)

  • 이기선;김두환;송관권;김성필;김정훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.75-83
    • /
    • 2018
  • 본 연구에서는 일반 버팀보 공법을 개선한 조립식 버팀보 공법을 적용할 때 구조안정성에 대하여 검토하였다. 굴착단계별 가상의 최대 발생 토압력에 대해 좌굴되지 않도록 충분한 강성을 가지는에 대한 안정성검토를 실시하였다. 고강도 조립식 버팀보 공법은 상부플랜지에 일정한 간격으로 볼트 구멍이 천공되어 있는 공법이다. 구조물의 좌굴해석 결과 안전율은 약 5%정도 증가하였고, 발생응력이 허용응력보다 낮기 때문에 버팀보의 구조 안정성은 확보된 것으로 판단된다. 특히 고강도 버팀보 공법을 적용 시 축방향 압축응력은 약 16% 증가한다. 고강도 버팀보 공법은 공사기간을 단축할 수 있으며 추가 부재를 구매할 필요가 없어 경제적이다.

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity

  • Luo, Kai;Pi, Yong-Lin;Gao, Wei;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.379-397
    • /
    • 2016
  • Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.

Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • 제8권6호
    • /
    • pp.443-454
    • /
    • 2005
  • Wind loading is very important, even dominant in some cases, to large-span single-layer reticulated shells. At present, usually equivalent static methods based on quasi-steady assumption, as the same as the wind-resistant design of low-rise buildings, are used in the structural design. However, it is not easy to estimate a suitable equivalent static wind load so that the effects of fluctuating component of wind on the structural behaviors, especially on structural stability, can be well considered. In this paper, the effects of fluctuating component of wind load on the stability of a single-layer reticulated spherical shell model are investigated based on wind pressure distribution measured simultaneously in the wind tunnel. Several methods used to estimate the equivalent static wind load distribution for equivalent static wind-resistant design are reviewed. A new simple method from the stability point of view is presented to estimate the most unfavorable wind load distribution considering the effects of fluctuating component on the stability of shells. Finally, with comparisive analyses using different methods, the efficiency of the presented method for wind-resistant analysis of single-layer reticulated shells is established.

Bending and stability information of cylindrical structures in the application of sports equipment

  • Xiaoyuan Liu;Radzliyana Radzuwan;Nadiah Diyana Tan Binti Abdullah
    • Advances in concrete construction
    • /
    • 제16권4호
    • /
    • pp.189-203
    • /
    • 2023
  • This study investigates the bending and stability properties of cylindrical constructions, with a focus on their use in the design and implementation of sporting equipment. The work focuses on a cylindrical construction resembling nanomotors, similar to components seen in sports equipment, using mathematical modeling based on high-order beam theory and nonlocal strain gradient theory. The analysis provides important insights into the dynamic behavior of these systems, revealing light on the impact of numerous factors such as rotational velocity, section change rate, and structural dimensions. The results show a relationship between angular velocity growth and section change rate, which leads to an increase in fundamental frequency values. Furthermore, the research emphasizes the effect of structural factors on dynamic deflection, giving critical information for increasing the stability and performance of sporting equipment. This study adds to the area of sports engineering by providing a more nuanced understanding of how cylindrical constructions react under diverse settings. The results will help to guide the design and manufacturing processes of sports equipment, assuring improved stability and performance for players across a wide range of sports.

구조적 안정성을 고려한 콘크리트 피복재의 신뢰성 설계 (Reliability-based Design Method of Concrete Armour Units with Structural Stability)

  • 이철응
    • 한국해안해양공학회지
    • /
    • 제16권3호
    • /
    • pp.142-151
    • /
    • 2004
  • 수리학적 안정성과 구조적 안정성을 동시에 만족시키면서 피복재의 중량을 산정할 수 있는 방법이 수립되었다. 수리학적 안정성은 Hudson의 경험식을 이용하여, 구조적 안정성은 충격하중 작용시 피복재 내부에 발생되는 최대인장응력을 산정, 피복재의 인장 저항력과 비교하는 개념으로 해석되었다. 이와 같이 산정된 수리학적 안정성과 구조적 안정성에 대한 적용한계를 재현기간별 설계 유의파고, 피복재의 중량, 그리고 인장 저항력의 함수로 제시하여 실무자들이 쉽게 사용할 수 있도록 하였다. 또한 결정론적 산정법의 불확실성을 고려하기 위하여 수리학적 안정성과 구조적 안정성에 대한 신뢰성 해석이 추가로 수행되었다. 두 파괴모드를 하나의 직렬계로 구성하여, 신뢰성설계법에서 이용되는 목표파괴확률을 가지고 단면파괴율의 함수로 피복재의 최적중량을 산정할 수 있었다.

헬리콥터용 축소 복합재료 힌지없는 허브 부품 제작 및 구조 시험 (Manufacture and Structural Test of the Small-scaled Composite Hingeless Hub Part for Helicopter)

  • 김덕관;홍단비;기영중;이욱;이명규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.119-122
    • /
    • 2003
  • This report describes the procedure of detailed design and structural test for the composite flexure which is a part of the hingeless hub system. First, stacking sequence design for composite flexure was done, and structural analysis by using NASTRAN was made to verify structural stability and safety. Using FPS installed at KIMM, composite flexure was laid up and cured using a autoclave. Before rotor ground test, the basic structural tests such as a bench test, tensile strength test and shear strength test, for flexure, were accomplished. Through replacing existing metal hub part with new fabricated composite flexure, improvement of aeroelastic stability and weight reduction were achieved. This result will be applied to composite rotor system design fur helicopter.

  • PDF

복합 굴절차의 붐과 바스켓에 대한 구조 해석 (Structural Analysis of Booms and Basket in the Multi-aerial Platform)

  • 소수현;강성수
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.885-891
    • /
    • 2012
  • In this study, some structural analysis using 3D CAD data, material properties, load conditions and boundary conditions are carried out to evaluate structural stability of the multi-aerial platform for high-rise fire fighting and rescue. We conduct structural analysis for the upper structures such as turn table, booms and basket, by using a universal structural analysis program NASTRAN. As the results, there is local stress exceeding the yield strength, but it is able to relax stress concentration in a way such as changing thickness of the structure or making larger inertia moment in cross section of booms.