• 제목/요약/키워드: Structural stability

검색결과 2,675건 처리시간 0.04초

Stability Function을 이용한 공간 뼈대구조물의 기하학적 비선형해석 포뮬레이션 (Geometric Nonlinear Analysis Formulation for Spatial Frames using Stability Functions)

  • 윤영묵;박준우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.201-207
    • /
    • 1998
  • In this study, a geometric nonlinear analysis formulation for spatial frames is developed using the 3D stability functions. For the formulation, the relationships of local and global coordinate systems in force, deformation, and the initial and current configurations of a frame are derived. The force-deformation relationship in global coordinate system is derived as well. The developed formulation is verified in each derivation by reducing the derived equations into 2D equations. The gradual plastification of connections and critical sections can be implemented effectively to this formulation for the complete second order inelastic advanced analysis of spatial frames.

  • PDF

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

휠체어 전동주행 보조기기용 커넥터의 구조안정성 해석 (Structural Stability Analysis of Connectors for an Electric Handbike)

  • 서한울;김대동;고철웅;이준흠;배태수
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.491-496
    • /
    • 2015
  • Electric handbike can be easily detachable to various sizes of manual wheelchair and the elderly and people with disabilities can use them easily. Therefore, connectors used for coupling between the handbike and manual wheelchair must secure structural stability for occupant safety. However, related research is rare. The aim of this study is to find the connector with highly structural stability by comparing static and dynamic mechanical characteristics among three typical connectors(a snatch lock, a slide latch, and a fastener) by computational simulations. To perform static and dynamic simulation, we referred to durability test based on Korean Standards and then calculated mechanical stresses in connectors. The results showed that the snatch lock addressed the lowest von-mises stress under the same mechanical condition. Therefore when using the combination of a handbike and a wheelchair, we concluded that the snatch lock is considered as the structurally stable connector to structural stability and usability.

온돌층의 구조안정성을 고려한 바닥충격음 완충재의 선정기준에 관한 연구 (A study to choose damping material used to reduce floor impact noise considering structural stability of Ondol layer)

  • 임정빈;이병권;고종철;황규섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.835-838
    • /
    • 2008
  • In this study, long-term compression displacement of damping materials used to reduce floor impact noise and compressive load that crack begins to happen in Ondol layers including the material were measured as basic research to make guide line for right choice of damping material considering structural stability of Ondol layer. From the result, it was found that compression displacement by elapsed time as well as early displacement of damping material when load is applied on Ondol layer are should be included in the guide line for the choice of damping materials. And no problem is expected to be in structural stability of Ondol layer in case choose a damping material that compression displacement at three months later from inflict load is within 10% than initial thickness.

  • PDF

단백질의 구조 전환과 기능 조절 (Conformational Switch and Functional Regulation of Proteins)

  • 유명희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of a 1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of a 1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of a 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

단백질의 구조 전환과 기능 조절 (Conformational Switch and Functional Regulation of Proteins)

  • 유명희
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제14권12호
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is n its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, ad internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of $\alpha$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of $\alpha$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of $\alpha$1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF

고정렬 Pt 라인 및 크로스-바 미세패턴의 구조적 안정성 연구 (Structural Stability for Pt Line and Cross-Bar Sub-Micron Patterns)

  • 박태완;박운익
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.510-514
    • /
    • 2018
  • This study discusses and demonstrates the structural stability of highly ordered Pt patterns formed on a transparent and flexible substrate through the process of nanotransfer printing (nTP). Bending tests comprising approximately 1,000 cycles were conducted for observing Pt line patterns with a width of $1{\mu}m$ formed along the direction of the horizontal (x-axis) and vertical (y-axis) axes ($15mm{\times}15mm$); and adhesion tests were performed with an ultrasonicator for a period greater than ten minutes, to analyze the Pt crossbar patterns. The durability of both types of patterns was systematically analyzed by employing various microscopes. The results show that the Pt line and Pt crossbar patterns obtained through nTP are structurally stable and do not exhibit any cracks, breaks, or damages. These results corroborate that nTP is a promising nanotechnology that can be applied to flexible electronic devices. Furthermore, the multiple patterns obtained through nTP can improve the working performance of flexible devices by providing excellent structural stability.

단백질의 구조 전환과 기능 조절 (Conformational Switch and Functional Regulation of Proteins)

  • 유명희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2001
  • In common globular proteins, the native form is in its most stable state. However, the native form of inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins is in a metastable state. Metastability in these Proteins is critical to their biological functions. Our previous studies revealed that unusual interactions, such as side-chain overpacking, buried polar groups, surface hydrophobic pockets, and internal cavities are the structural basis of the native metastability. To understand the mechanism by which these structural defects regulate protein functions, cavity-filling mutations of ${\alpha}$1-antitrypsin, a prototype serpin, were characterized. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. We also increased the stability of ${\alpha}$1-antitrypsin greatly via combining various stabilizing single amino acid substitutions that were distributed throughout the molecule. The results showed that a substantial increase of stability, over 13 kcal/mol, affected the inhibitory activity with a correlation of 11% activity loss per kcal/mol. The results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions and that the native strain of e 1-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.

  • PDF